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Propriétés ergodiques des flots en basses dimensions
incluant les billards dispersifs

Résumé

Cette these est divisée en deux parties. Dans la premiére partie, nous proposons une
preuve courte montrant que la croissance des intégrales ergodiques d’un flot uniquement
ergodique sur un tore en dimension deux — et admettant une section transverse dont ’ap-
plication de Poincaré a un nombre de rotation de type constant — est au plus logarithmique.
En appliquant ce résultat au développement asymptotique des intégrales ergodiques pour
les flots de Giulietti-Liverani, nous obtenons une nouvelle preuve de ’absence de résonance
de Ruelle non triviale de module strictement supérieur a un. Nous donnons également un
exemple de flot sur le tore renormalisé par un difféomorphisme Axiome A, satisfaisant les
hypotheses impliquant une croissance au plus logarithmique.

Dans la deuxieme partie, nous construisons des états d’équilibre pour 'application
de collision d’un billard dispersif, associés a des potentiels Holder par morceaux. Cette
construction repose sur I’étude d’un opérateur de transfert pondéré agissant sur des espaces
de Banach anisotropes de distributions. Nous montrons que lorsque le potentiel satisfait
certaines conditions techniques, alors il existe un état d’équilibre, qui de plus est unique,
Bernoulli, adapté et a un support total. Nous montrons qu’il existe un potentiel particulier
tel que ’ensemble de ses états d’équilibre est en bijection avec ’ensemble des mesures
d’entropie maximale du flot billard. Dans la derniére partie, nous montrons que ce potentiel
satisfait les hypotheses suffisantes garantissant ’existence et les autres résultats énoncés sur
I'unique mesure d’équilibre. Par conséquent, nous obtenons une condition suffisante pour
que le flot de billard admette une unique mesure d’entropie maximale, et nous donnons des
exemples de billards qui satisfont cette condition. Enfin, nous prouvons que cette mesure
est Bernoulli, adaptée au flot et a un support total.

Mots-clés : Systémes Dynamiques, billard dispersif, formalisme thermodynamique, opéra-
teur de transfert, Banach anisotrope, theorie spectrale, résonnance de Ruelle



Ergodic properties of low dimensional flows including
dispersive billiards

Abstract

This thesis is divided into two parts. In the first part, we give a short proof showing
that the growth of ergodic integrals of a uniquely ergodic flow on a torus in dimension
two — and admitting a transverse section whose first return Poincaré map has a rotation
number of constant type — is at most logarithmic. By applying this result to the asymptotic
expansion of the ergodic integrals for Giulietti—Liverani flows, we obtain a new proof of the
absence of non-trivial Ruelle resonance of modulus strictly larger than one. We also give
an example of a flow on the torus renormalized by an Axiom A diffeomorphism, satisfying
the hypotheses implying at most logarithmic growth.

In the second part, we construct equilibrium states for the collision map of a dispersive
billiard, associated to piecewise Holder potentials. This construction is based on the study
of a weighted transfer operator acting on an anisotropic Banach space of distributions. We
show that when the potential satisfies certain technical conditions, then the equilibrium
state exists, is unique, Bernoulli, adapted and has full support. We show that there exists a
potential such that the set of its equilibrium states are in bijection with the set of measures
of maximal entropy of the billiard flow. In the last part, we show that this potential
satisfies the sufficient assumptions guaranteeing the existence and the other results stated
on the unique equilibrium measure. As a consequence, we obtain a sufficient condition
for the billiard flow to admit a unique measure of maximal entropy, and give examples of
billiard tables that satisfy this condition. Finally, we prove that this measure is Bernoulli,
flow-adapted and has full support.

Keywords: Dynamical Systems, dispersive billiard, thermodynamic formalism, anisotropic
Banach space, transfer operator, spectral theory, Ruelle resonance.
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Chapter 1

Introduction

The field of Dynamical Systems is a very broad branch of mathematics focused on the
long term behaviour caused by some evolution law. In this chapter, we first motivate the
statistical approach in the study of a transformation or flow. We then insist on the fact
that not all invariant measures give the same amount of information, and we present some
of the most important ones. In a second time, we focus on the particular case of hyperbolic
dynamics, more precisely Anosov maps and flows, and we describe the properties of the
above mentioned invariant measures. We also present various ways these measures can be
constructed, in particular through a functional approach. This last method can also give
asymptotic expansions from which we can deduce the rate of mixing. Finally, we present
the contributions of this thesis.

1.1 Motivations

The idea that a dynamical system derived from classical mechanics is not subject to
statistical properties goes back to Laplace and is based on the fact that the motion of such
a system is uniquely determined once initial conditions are given. However, in practical
terms, the initial conditions are never known with perfect accuracy, and it is therefore the
motion of a neighbourhood of the initial condition, a cell, in the phase space that must be
studied, where each point of the cell moves accordingly to given differential equations (of
motion). More generally, one could be tempted to consider other flows than Hamiltonian
ones, or even to consider discrete time dynamics through iteration of a map. This is the
settings we will consider. We say that the trajectory of a point x is stable if for every € > 0
there is 0 > 0 such that for all large enough time ¢, the image of the d-neighbourhood of x
by the time ¢ of the motion is contained in the e-neighbourhood of the point z:, image of
x after a time t. Clearly, the motion of a cell containing a point whose trajectory is stable,
is well described by the motion of this point. Now, for some transformations — even for
some conservative ones, that are very easy to describe, see Example 1.1.1 — cells having
initially a regular form become distorted, take intricate form, and distribute themselves
into complicated shapes in the phase space.
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Example 1.1.1. One of the most famous, and simplest, example of chaotic map is the

2 1
so called Arnold’s cat map. It is obtained by letting the matriz A = (1 1) acts on the

two-torus T? = R2?/7%? As shown in Figure 1.1, the image after a single iteration of the

Figure 1.1 — The picture on the left represents a cell with the shape of a cat inside a
fundamental domain of the torus. The picture on the right represents the action of A on the
fundamental domain in the plane, as well as the image of the cell inside a single fundamental
domain (the image is taken from Arnold’s book).

inatially cat-shaped cell no longer looks like a cat at all. One can easily imagine that the
situation can only get worse with more iterations.

Clearly, the spreading of those cells comes from instabilities, that is, arbitrarily close
points eventually diverge and seem to move independently. We arrive at the idea that,
for unstable motions, trajectories should present statistical properties, although they are
deterministic.

1.1.1 Statistical description of orbits

By statistical description of an orbit, we mean its asymptotic distribution. More precisely,
given a continuous self map T : X — X of a metrizable space X, and a subset U C X,
we are interested in the number of visits to the set U under the first n iterates of a point
x € X, that is, in the sequence

#icl0on—1]|T'(x) e U} _1 =

Fy(T,x), = Z Iy oT(x).
1=0

n n -
Instead of considering discontinuous observables, such as 1, it is preferable to consider

continuous ones. Indeed, from the Riesz representation theorem, the set of Borel measures
E3

over X can be identified to the topological dual of the continuous functions (C°(X))*.
Furthermore, given x € X, the map associating to each ¢ € CY(X) its Birkhoff average
n—1 .
Li(p,n) = 2 3 @ oTi(z) is linear. Thus, if for all ¢, I,(¢,n) converges, then there exists
i=0
a measure (i, such that
Jim I, (p,n) = /sodux

and since I,(1,n) =1 for all n, we get that u,(X) = 1, that is u, is actually a probability
measure. Notice that since n(I;(¢ o T,n) — I,(p,n)) is bounded, the limits (when they
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exist) associated to ¢ o T and ¢ coincide, thus for any Borel set A C X, Tipu,(A) =
pa(T7LA) = p(A), that is p, is a T-invariant measure.

Two natural questions appear:

i) Does such a point z exist?
ii) If 4 is a T-invariant measure, is there a point x such that u, = u?

To give a positive answer, we proceed as follows: from the Krylov—Bogolubov theorem,
there exists a T-invariant measure p. Using the Birkhoff ergodic theorem, for all ¢ €
LY(X, u), I:(¢,n) admits a limit for u-almost every x. Since X is compact, there exist
a sequence (;);en of continuous function that is dense in C°(X). Let = be such that
I,(pi,n) converges for all i. Then, for any ¢ € C°(X), I.(¢;,n) is a Cauchy sequence, and
hence converges. Now for the second question, we repeat the same construction starting
from an ergodic measure p, where a measure is said to be ergodic if it is irreducible in
the sense that for all T-invariant Borel set A, i(A) is either 0 or 1. Ergodic measures are
extremal points of the set of invariant measures, and thus always exist. In this case, the
limit of I.(¢,n) is equal to [ ¢ du for u-almost every .

The fact that both i) and ii) have positive answers justifies the statistical approach.
If p is a T-invariant measure, the above discussion on the chaotic evolution of a cell can
be quantified: p is said to be mixing if for all Borel sets A and B, then u(ANT""B)
converges to u(A)u(B) when n goes to infinity. In other words the cell B spreads evenly
in the phase space, according to the measure pu.

1.2 Specific invariant measures and Entropy

Since a T-invariant measure is a fixed point of T}, these measures are also important in
the study of 7. We are thus trading a nonlinear problem in finite dimension, with a linear
problem in infinite dimensions: the action of the transfer operator T on the Banach space
of measures (C°(X))*. Since T, preserve the subset of probability measures M(X), we
will restrict our attention to this subset. Furthermore, according to the previous section,
the relevant probability measures in the description of the behaviour of 1" are those that
are T-invariant.

From now on, by measure we mean probability measure. If p is a T-invariant measure
we define

A(p) ={v e M(X) | v << pu}.

The statistical behaviour of p is related to the behaviour of 7% on A(u) as follows. The
measure y is ergodic if and only if p is the only fixed point of T%| A(p)» while p is mixing if
and only if p is an attractive fixed point of Tk 4(,)-

Now, not all invariant measures are relevant in the study of 7. For example, if T
admits a periodic point z of period n, then the measure % Z?:_ol O7i(z) 18 T-invariant (and
in fact ergodic) and describes perfectly the behaviour of the point x, but it gives very few

information on the rest of the phase space (except if  is an attractive fixed point).

1.2.1 Smooth invariant measures and physical measures

In classical mechanic, the differential equations of motion can be integrated into a flow
which preserve a volume measure. Many other natural flows or transformations are in this
situation, and this smooth measure is often the most studied one. Notice that the ergodic
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theorem then holds Lebesgue-almost everywhere. If such a measure is ergodic, it is then
the unique invariant measure equivalent to Lebesgue.

Nonetheless, some systems are sometimes deprived of smooth measures. It is then
tempting to find whether there exist measures with similar properties one expects from a
smooth measure. Physical measures are those for which the ergodic theorem holds on a set
of positive Lebesgue measure.

1.2.2 Entropy and Measures of maximal entropy

In 1958, taking inspiration from Shannon information theory, Kolmogorov [Kol58] intro-
duced a quantity associated to each invariant measure: the Kolmogorov—Sinai entropy
h,(T). This quantity is particularly important for many reasons, one is that the entropy is
a conjugacy invariant. We recall briefly the definition of h,(T). Given a finite partition
£ ={A41,...,A,} of X into measurable sets, define its static entropy by

H,(€) = — 3 n(A) log ().

Aegg

If & and & are two partitions, define the join partition & V & to be the partition of X
into sets of the form AN B, where A € & and B € &. Since T~'¢ is a finite partition
whenever ¢ is a finite partition, define &, = ¢ VTV --- vV T Then the sequence
log H,(&,) is subadditive, and therefore %log H,,(&,) converges to a limit called h,(T,¢&).
Finally, define the entropy of u to be

hu(T) = sup{h,(T,§) | £ is a finite partition into measurable sets} .

Morally, this quantity describes the complexity of T perceived by p. In this sense, it is
therefore natural to investigate the measures with maximal entropy, that is measures pyne
such that h, (1) = sup{h,(T) | p € M(X), Tipe = p}.

When T is a continuous map, then the following equality holds

htop(T) = Sup{hu(T) | RS M(X)7 Tip = M}

and is called variational principle. Here hio,(T) is the topological entropy of 7', and is
equal to the pressure (see the next subsection) of the zero potential.

Unfortunately, existence of such measures pynyg is far from being automatic. Indeed, al-
though M(X) is a compact set, the map o+ h,(T") is usually not continuous. Nonetheless,
in 1972, Bowen proved that if T" is expansive, that is, if

Je > 0V, y € X |d(T' (@), T'(y) <e,Vic Z=a =y,

then p +— h,(T) is upper-semicontinuous [Bow72a]. This regularity is sufficient to ensure the
existence of measures of maximal entropy. Still, ergodicity does not insure the uniqueness
as in the case of smooth measures (in fact, when 7" is continuous and the set of measures
of maximal entropy is not empty, at least one of those measures must be ergodic).

In 1974, Bowen introduced the specification property [Bow75] and proved that, in
addition with expansiveness, it ensures the uniqueness of the measure of maximal entropy.

We now give some explicit examples of dynamics, either maps of flows, for which the
measure of maximal entropy exists, is unique and is clearly identified.
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Example 1.2.1. Let m > 2 be an integer. Define E,, on the circle ' = R/Z by
E,(z) = mzmod 1.

The topological entropy of E., is equal to logm. Furthermore, the Lebesgue measure is
FEp-invariant, and its entropy is logm. This is the only measure of maximal entropy of
E,.

Example 1.2.2. Let A be a finite set. We call A an alphabet. Define the set of bi-infinite
words Q = A% and the shift o : Q — Q by 0((x:)icz) = (xiz1)icz. Then any o-invariant
measure on Q must be of the form pg = u®%, where p is a measure on A. By a simple
computation, one get hy,(0) = > ,ca —p(a)logu(a). This quantity is maximized when
pu(a) = 1/#A for all a € A, and is equal to log #.A.

Example 1.2.3. Given a matriz A of size n x n, with n = #.A, whose coefficients A;; are
in {0,1}, define the subshift of finite type to be o restricted to the invariant subset

Qa = {(z)icz | Vi € Z) Ap,, =1}

Denote the restriction of o to Q4 by oa. If there exists N such that every coefficient of AN
is positive, then the topological entropy of o4 is equal to log p(A), where p(A) is the spectral
radius of A. Furthermore, there exists a unique measure w4, called the Parry measure,
with hy,(04) = log p(A). This measure can be explicitly constructed from left and right
eigenvectors of A associated to the eigenvalue p(A)

Example 1.2.4. As in Example 1.1.1, one can construct hyperbolic automorphisms of T?
from any matrices A € My, (7Z) with determinant +1 and trace strictly larger than 2 (in
absolute value). In this case, such A has two distinct real eigenvalues A > 1 and A\=%. One
can compute the topological entropy of the map induced by A to be equal to log A\. One can
also prove that the Lebesgue measure is invariant and has entropy also equal to log A. It is
the only measure of mazximal entropy.

Example 1.2.5. In the case of the geodesic flow on a compact surface of constant negative
curvature, the volume measure coincides with the measure of maximal entropy.

1.2.3 Pressure and Equilibrium measures

In the case of symbolic dynamic, and later for continuous transformations, Ruelle introduced
in 1972 [Rue73] a quantity generalizing the notion of topological entropy: the (topological)
pressure. This quantity has then be studied in the general case by Walters [Wal75]. We
recall briefly the definition of the pressure P,(T, g) associated to a potential g : X — R.
First, define the Bowen dynamical distance d,, to be such that for all x and y € X,

dn(w,y) = max d(T"(z), T'(y)).

Given some ¢ > 0, we say that a set £ C X is (n,¢) separated if for all distinct points x
and y € E, d,(x,y) > €. Define the Birkhoff sum of g to be S,g = ?:_01 goT? and

P.(T,g,e,n) = sup{z e59(®) | B is (n,e) separated}
zeE
P.(T,g,e) =limsup P.(T, g,e,n),

n—o0

P.(T,g) = 513(1) P(T,qg,¢),
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where the last limit exists because € — P, (T, g, ) is nonincreasing (the limit could be o).
Define the topological pressure of T under the potential g to be P.(T,g). This quantity
satisfies two remarkable results.

Theorem 1.2.6. [Wal82, Theorems 9.10, 9.11] Assume that T : X — X is a continuous
map on a compact metrizable set X. Then

i) Pu(T,-) determines the set of invariant measures M(X,T): if p is a finite, signed
measure, then p € M(X,T) iff for all g € C°(X), [y gdp < P(T,g);

i) for all continuous g, P(T,g) = sup{hu,(T)+ [gdu | pe M(X,T)}.

In analogy with the case g = 0, ii) is also called variational principle, and the measures
(if they exist) achieving the sup are called equilibrium measures (or equilibrium states).
Here again, the existence of such measures is not always guaranteed. However, using again
Bowen’s results, if 7" is expansive, then p + h,(T) + [ g du is upper-semicontinuous (since
the first term is, and the second term is continuous by definition of the weak-* topology),
thus, there exist equilibrium states.

In the next section, we will see that, for some transformations 7', all the above mentioned
invariant measures are equilibrium states.

1.3 The case of the Hyperbolic Dynamic

A particularly important and extensively studied systems is the family of hyperbolic
dynamical systems. The interest in those dynamics goes back at least to the work of
Hadamard [Had98] on the geodesic flow on negatively curved surfaces. A crucial point
in the history of their study is the axiomatic definition given by Anosov of the flows and
diffeomorphisms that now bear his name. The introduction of this definition was motivated
by the study of the dynamical properties of the geodesic flow on the unit cotangent bundle
of a Riemannian manifold of negative (a priori non-constant) sectional curvature. Research
in this area has subsequently been very active and, although there are still unanswered
questions, the understanding of hyperbolic dynamics has greatly improved since Anosov’s
early work, in particular through the development of many tools. Among these, we can
mention Markov partitions, coupling arguments, Young towers, etc. One approach that
has been particularly developed in recent decades is the one using functional analysis. This
approach is particularly suitable for generalizations for dynamics whose hyperbolicity is
weaker than the one defined by Anosov. It is from this approach that the results presented
in this thesis are derived.
We start by recalling the definition of an Anosov diffeomorphism

Definition 1.3.1. Let M be a compact manifold and T : M — M be a C* diffeomorphism.
We say that T is an Anosov diffeomorphism if, for every x € M there is a splitting of the

tangent space of M at x
T.M =FE! & E},

and there are constants C' > 0, A > 1 and a smooth Riemannian metric on M such that
(1) for every x € M, and * € {s,u}, we have D,T(E}) = Bty

(7i) for every x € M, v € EY and n € N, we have |D,T7"(v)| < CA™"|v|;
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(iii) for every x € M, v € ES and n € N, we have |D,T"(v)| < CA™"|v|.

A example of such diffeomorphism is given in Example 1.1.1. Actually, any matrix
A € SL(2,Z) with no eigenvalue of modulus 1 induces an Anosov diffeomorphism on the
torus R?/Z?, as in Example 1.2.4.

The definition of Anosov flows is obtained by modifying the above definition as follows:
a flow (¢;)icr, generated by a zero-free vector field X, is said to be Anosov if for each
r € X there is a splitting T, M = E? @ E¥ @ E2, such that E? is the span of X (), and
EY, E? respectively satisfy (ii) and (iii) with T replaced by ¢1, and n by ¢t > 0

1.3.1 The Ruelle-Perron—Frobenius transfer operator

There are many different approaches to the construction of the measures discussed in
Subsection 1.2. In the case of smooth invariant measures in the setting of Anosov maps, the
first construction was performed by Sinai, Bowen and Ruelle [Bow08]. For this reason, these
measures are called SRB measures. Their construction starts by proving the existence of a
finite Markov partition, and of a (Lipschitz) semiconjugacy map between the hyperbolic
diffeomorphism and a subshift of finite type. The next step is to exploit the fact that the
SRB measure is the equilibrium state associated to the potential g = —log DT'|gu. In the
uniformly hyperbolic case, g is at least Holder continuous by the theory of Hirsch—Pugh—
Shub [HPS77]. Lifting this weight to the subshift of finite type produces a Holder potential.
The results on transfer operators developed in the case of symbolic dynamics yield an
equilibrium state, which is exponentially mixing for Holder observables if the subshift is
topologically mixing. The drawback of this method is that a lot of information is lost while
going to the symbolic setting (the maximal smoothness there is only Lipschitz).

Actually, one could avoid the coding step by considering directly the action of the
transfer operator T,. The construction of a SRB measure from this method arises from the
following heuristics. If T" admits a SRB measure which is equivalent to the Lebesgue measure
A, the action of T can be restricted to A(X). Therefore, for each u = pA € A(X), we have
T.(pA) = ( I oT_1> A. It is then natural to consider the so called Ruelle-Perron-Frobenius

operator £ : L'(M,\) — L'(M, \) defined by

Notice that [[L(p)|[L1arn) = llpllzr(ar,n)- Now, if there exists a nonnegative p such
that £L(p) = p, normalized so that [pdA = A(p) = 1, then the measure p defined by

tsrs(p) = % is T-invariant since

Ap)(Tept) (o /prdA /(poTpd L)) /,c (¢ 0 Tp)dA
= [ L) ar= [ pdr=Apn(e)

where in the second equality we used that A is a left eigenvector of £ associated to the
eigenvalue 1 (which is a consequence of the change of variable formula). In this sense, we
have paired left and right eigenvectors associated to the maximal eigenvalue of £ in order
to construct the invariant measure pggrp. This method of constructing invariant measure
by pairing eigenvectors will be used in the next subsection where the operator £ will be
equipped with a different weight.
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Furthermore, since
[eorvan— [ear [var= [o(ewp) ~p [wpar)ax

the rate of mixing is governed by the decay to zero of L™(¢) — p [ $dA. When 1 is a simple
eigenvalue of £, then ¢ — p [ ¢ dA is the spectral projection to the eigenspace spanned by
p. Therefore, the spectral theory of £ also gives information on the rate of mixing of pgggp.

It turns out that finding such an eigenvector p is usually not that easy and some more
involved work has to be done. This issue have been much studied in the last decades and
the solution essentially consists in introducing well chosen Banach spaces of distributions
on which £ acts (after being extended). Actually, there are many different constructions for
those Banach spaces [BKL02, GL06, BCFT18,Ball8]. These constructions (almost all) rely
on finding two anisotropic norms, a strong one || - || and a weak one || - ||,,, on C"(M,R) for
some r € [1,+0o0]. These norms are distributional norms that satisfy ||« ||, < ||-|| < ||‘]lcr-
The strong norm is anisotropic, in the sense that, for ¢ € C"(M,R), ||¢|| measures the
regularity (in a classical sence) of ¢ in the stable directions, while it measures the regularity,
in a distributional sense, of ¢ in the unstable directions. In view of using functional analysis
techniques, it it more convenient to work with Banach spaces. Therefore, let B and B,, be
the completions of C"(M,R) with respect to the norms || - || and || - ||,,. These spaces are
the ones on which we want to study the action of £. To do so, we first need to extend the
transfer operator onto these Banach spaces. A convenient way to do so is to find || - || and
[| - |lw so that

C™(M,R) < B < By — (C"(M,R))", (1.3.2)

where the first two injections are the canonical maps, the second map is compact, and the
third embedding is obtained by extending ¢ +— @A. In this case, we can see the elements
of B and B, as distributions and extend £ on (C"(M,R))* by setting

L)) =poT,f), ¢eC(MR).
Notice that it is indeed an extension, since for f € C"(M,R), we get

i) = [rorar= [ Lortparn= (Lo w)

and by the identification f +— fA, £ takes the form (1.3.1) on smooth function.

Every construction of anisotropic Banach spaces, in this context, has in mind that £
should be quasi-compact, in the sense that,

Definition 1.3.2. For a given bounded linear operator L from a Banach space B to itself,
the essential spectral radius ress(L) is the infimum of the r > 0 such that the intersection of
the spectrum o (L) with the disc {z € C | |z| > r} is comprised of finitely many eigenvalues
with finite algebraic multiplicities. We say that L is quasi-compact if the essential spectral
radius of L is strictly smaller than its spectral radius r(L).

A way to prove that £ is quasi-compact is to exploit the weak space, and to show that
L satisfies a Lasota—Yorke type inequality, that is
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Definition 1.3.3. We say that the operator L satisfies the Lasota—Yorke inequality if there
exist 0 < 0 < r(L) and constants A and B such that for alln >0 and all f € B,

L DI < A0 ([ f]] + Bl[ f]w -

The case where 8 = r(L) and B = 0 should be thought as a degenerated case.

According to the work of Hennion [Hen93|, after a spectral formula due to Nuss-
baum [Nus70], if £ satisfies such inequality for some 6 < r(L), then res (L) < 6 and thus
L is quasi-compact.

First, the peripheral spectrum of £ has to be investigated. It is made of finitely many
eigenvalues A1, ..., Ax with modulus equal to the spectral radius of £, with A\; = 1. Let II;
be the spectral projection onto the eigenspace associated to ;. These projectors are well
defined operators from B to itself with a finite dimensional ranges, and for all f € B, II;(f)
can be extended into a signed measure on M. In fact, the projector can be explicitly written
as the limit of the averaged action of \; "L". Letting p = II; (1), one can show that all
measures in the range of some II; are absolutely continuous with respect to p. In fact, from
the characterisation of IIy, y is the limits of 1 "= o(T*), A, which is another (equivalent)
definition of the SRB measure, so that pusgs = p. One can construct finitely many ergodic
measures from a basis of the range of II; such that they are the ones appearing in the
ergodic decomposition of p. In particular, we get that u is ergodic if and only if the range
of II; is one-dimensional. In the case of Anosov diffeomorphism, a sufficient condition for 1
to be a simple eigenvalue of £ is that T is topologically transitive. Moreover, u is mixing if
and only if the peripheral spectrum of £ is reduced to the simple eigenvalue 1. Still in the
case of an Anosov diffeomorphism, a sufficient condition for that is the topological mixing
property of 7.

As above, we can write u as a pairing of left and right eigenvectors of £. Indeed, let
e1 be the element of (C"(M,RR))** defined by ei(f) = (1, f) for f € (C"(M,R))*. We get
that

L (e1)(f) = (f, L) = (Lf,e1) = (1, Lf) = (1, f) = ex(f).

Hence e; is a left eigenvector of £ associated to the eigenvalue 1. Pairing the left and right
eigenvectors of £ associated to 1, we get

TOY = e iRy

In the case where p is mixing, the rest of the spectrum of £ gives rise to an asymptotic
expansion of the correlation functions. Actually, in [BKL02, GL06, BCFT18, Ball8] it
is not only two Banach spaces that are constructed but an infinite family (ordered by

smoothness), giving better estimates on the essential spectral radius of £ the smoother T’
is. More precisely, if T is chosen to be C*°, we can find Banach spaces so that the constant
0 from the Lasota—Yorke inequality is arbitrarily small. In other words, given any € > 0,
there is a Banach space B such that 7ess(L£) < €, and thus, letting (7;)1<j<p be the distinct
eigenvalues of £ of modulus larger than e, with v = 1, there exists k > 1, and we can
write

D

L(p) =Y (yld+ NjILi(p) + R(p), ¢€B, (1.3.3)

J=1



18 Chapter 1. Introduction

where R has a spectral radius smaller than ¢, the II; are finite rank projections (II;II} =
6;xIL;), and the Nj are finite rank operators such that ILiN, = NII; = §;N, and
(N;)F = 0 (nilpotence). In addition,

IR =RI; = N;R=RN; =0, NN =3;5(N;)>

Thus, we get that

D D K
ﬁ"(cp)=Z(7ﬂd+/\fj)nﬂj(s@)+7€"(<ﬁ)=Z'y§’<z( )'yj W’) i(p) + R"(p).

j=1 j=1 1=0

Since we assumed that v = 1 is simple, N1 = 0 and II;(¢) = e1(¢)p. Thus, for any ¢ and
Y € C"(M,R), with r large enough, we get

’/«poT”@Ddu—/@du/wdu Zvj (Z( ) -l/\/}>ﬂj(¢u)(s0)\ (1.3.4)
=2
D K
= <<poT”,W>—el(wu)u(cp)—Z%’-L( (7)7{“@)&(%)(@’ (1.3.5)

= o, L (¥p)) — T (¥p)(p) — > _ 7 <i (?) 'yj"N}> Hj(¢ﬂ)(¢)‘ (1.3.6)

=2 =0
D K

- -2 (Z <l> jl/\ff>ﬂj(¢u)(so)‘ (1.3.7)
7=1 =0

= |R™(vp)(p >\ < Clglorlorlul e (1.3.8)

In other words, the spectral theory of £ gives an asymptotic expansion of the correlation
between ¢ and 1.

Finally, one can prove that p is the equilibrium state associated to the potential
—log J¥T', by using the operator £ is order to get a sharp upperbound on Bowen balls
of small radius, involving the Birkhoff of the sum potential as well as its pressure. Using
Brin—Katok’s theorem, we relate these measures to the entropy of u, proving that u is such
that P(T, —log J*T) = h,(T) — [log J*T dp.

1.3.2 Weighted transfer operators

By analogy with case of symbolic dynamic (see e.g. [Bow08]) where the equilibrium state of
a potential ¢ is constructed from the pairing of left and right eigenvectors of the weighted
transfer operator

(Lof)x)= Y Wy

yeo~lz

we wish to do the same directly for T'. We then define the weighted transfer operator, with

weight g,
L,(f) = (eQJ“T / ) oT™!, feC"(M,R).
JT
The unstable Jacobian appears here so that for ¢ = —log J*T', we recover the operator

from the previous section. Yet, this operator can be slightly simplified since JT'(x) =
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J¥T (z)J*T (x) E;:(FS)) where E(x) is the sin of the angle between the stable and the

unstable bundles £® and E* at . Then, replacing g by g — log E o T + log F/, which are
cohomologous and should give rise to the same equilibrium states, we finally define

Ly(f) = (eg J{T> oT™', feC"(MR). (1.3.9)

The principal problem here is that, for smooth potential g, the function 1/J°T is not
smooth. The initial solution provided by Gouézel and Liverani [GLO8] was slightly different.
They still consider a weighted transfer operator acting on an anisotropic space obtained
as a completion, however, the space to be completed is radically different from a space of
smooth functions. Indeed, they considered the space of C"~! sections of the line bundle
over G, where G is the Grassmannian of the oriented ds-dimensional subspace of the tangent
bundle T'M, with ds the dimension of the stable bundle E?. The transfer operator they
used also has a weight, but there is no J*T in it. The rest of their analysis also consists in
proving the Lasota-Yorke inequality, and then to study the peripheral spectrum. Pairing
left and right eigenvectors associated to the eigenvalue equal to the spectral radius gives
rise to an invariant measure. This measure is proved to be the expected equilibrium state
by controlling the measure of Bowen balls.

In dimension two, another way to bypass this difficulty is provided by Demers [Dem21]
and consists in making use of the SRB measure. For now, only the measure of maximal
entropy, corresponding to g = 0, has been constructed, but it might be possible to adapt
the construction to more general potential g through heavier computations. The starting
point is to replace the identification f +— fA by f +— fugsrs, so that the extension of Ly to
the dual is formally

Lo(h) = (Yo 1 )

The spaces B and B,, are then obtained by completing C'!(M, R) with respect to norms
|| - || and || - [|w- The choice of these norms leads to the embedding (1.3.2) (where the
second one is compact), except for the last one where the dual of C''(M, R) must be replace
by the dual of C*(W?), the space of functions which are a-Ho6lder along pieces of stable
manifolds. In this setting, £y can be extended to operators from B to itself, as well as
from B, to itself. Furthermore, £, satisfies Lasota—Yorke type inequalities on both spaces
(the one on B, is of the degenerated type). As it is now usual, an invariant measure iy is
obtained by pairing left and right eigenvectors of Ly. Thanks to its particular structure,
the po-measure of Bowen balls is sharply controlled, which in particular implies that pg
is a measure of maximal entropy. Furthermore, uniqueness of such maximal measure is
proven, as well as a spectral gap for £y3. Thanks to this gap, a similar expansion as in
(1.3.4) gives exponential mixing for C'! observables.

It has to be noted that the construction from [Dem21] was done in the more general
context of piecewise hyperbolic maps (in dimension two) with bounded derivative.

1.4 Main results, in contexts

This thesis is essentially divided into two parts (of unequal length). The first one is devoted
to give an alternative proof of the absence of the deviations of the ergodic integrals of
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Giulietti-Liverani flows, while the second part is devoted to construct equilibrium states —
and in particular the measure of maximal entropy — for dispersive billiard flows.

1.4.1 Absence of Deviations for parabolic flows

In their paper [GL19], Giulietti and Liverani introduced a flow h! obtained by integrating
the one-dimensional stable foliation of an Anosov diffeomorphism F' of the two-dimensional
torus T2. Similar flows have already been introduced in the past, and it is known since
the work of Furstenberg that the classical horocycle flow (associated to the geodesic flow
on a compact negatively curved surface) is uniquely ergodic. Using symbolic dynamics,
Furstenberg results have been extended by Marcus [Mar75a, Mar75b] to flows generated by
one-dimensional unstable foliation of an Anosov diffeomorphism or flow, and then with
Bowen [BM77] to higher dimensional foliation.

Giulietti and Liverani prove back that h! is uniquely ergodic, of invariant measure j°.
Then, they also show that h! is minimal and admits a transversal curve such that the first
return map has a rotation number of constant type. For a given C” Anosov diffeomorphism
F, Giulietti and Liverani introduce a suitable Banach space Bar,, on which acts the transfer
operator £ associated to F. For large enough r, they provide an asymptotic expansion of

H,7r(f) = /OTf(ht(ac)) dt, =e€T? feC™(T? ), (1.4.1)

from eigenvectors of the dual operator £*, associated to eigenvectors {pj jV:GOL of modulus
strictly larger than the essential spectral radius pgr,. The p;’s are called Ruelle resonances,
and those of modulus strictly larger than 1 are called deviation resonances. The dominant
term of the expansion is given by T'u®(f), corresponding to the trivial deviation resonance
po = elor | where hiop is the topological entropy of F'. Furthermore, the error term of the
expansion is a negative power law.

In order to fix the ideas, we state the expansion in the simpler case where there are
non Jordan blocs (as in [Ball9, Eq. (1.2)]): For any § > 0 there is a constant C' and

{Cj(x, T)} 8" with sup, 1 |C;(z, T)| < C, such that for all f € C"(T?,C),

Ngi,
Hor(f) =Tus(f) + > T%Ci(z,T)O;(f o 1) + Rar(f)
j=1

log p;
htop
and the rest satisfies

where 0; = <1,0;¢€ B@L is an eigenvector of £* associated to the eigenvalue P

log par, + 9

sup [Ro, () < C(T%| fllc- +sup[f]) . funin = <0,

htop
and 7 is the projection from the unit tangent bundle of T? to T?2.

Recently, Baladi [Ball9] and Forni [For20] provided independent proofs of the absence
of deviation resonances in the general case (with possibly Jordan blocs). Their proofs are
quite different: Baladi showed that F' does not have non trivial deviation resonance using
methods derived from dynamical determinants, while Forni used the action of the (pseudo-)
Anosov F on the first cohomology and proved that deviation resonances do not exists on
surfaces of genus one.
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In Chapter 2, we give a short proof of a result implying the absence of deviation
resonances for Giulietti-Liverani flows. Actually, this result gives a logarithmic bound on
the growth of H, r(f) for more general flows:

Theorem 1.4.1. If hy is a C' flow on the torus T2 without critical points nor periodic
orbits — in particular it admits a transversal curve v and is uniquely ergodic of invariant
measure i — and if the rotation number of the Poincaré first return map R to v is of
constant type, then there exist constants Ki and Ky such that for any C' observable f with
[ fdu=0, any = and any T > 0,

|He ()] < Kl fller log(1 +T) + Kol flles

Furthermore, in the second part of Chapter 2, we give an explicit construction of a C!
flow h; on T?, renormalized by an Axiom A diffeomorphism f3, satisfying the assumptions
of Theorem 1.4.1. By a renormalization, we mean that fg o h; = hy-1; o f3, where here,
A71 < 1 is the uniform contraction factor of fs associated to the stable foliation of its
hyperbolic set. In particular, we are able to compute the rotation number of the first
return map to a specific transversal section and we prove that it is a quadratic integer —
and thus, of constant type.

1.4.2 Equilibrium states and Measure of maximal entropy for billiard
flows

Chapters 3 and 4 are dedicated to the constructions of equilibrium states for the Sinai
billiard flow, and more specifically the measure of maximal entropy.

Dispersing billiards, as introduced by Sinai [Sin70], form a class of hyperbolic dynamical
systems with discontinuities and unbounded derivative at the singularities. It is then
natural to try to adapt the methods used in the context of Anosov dynamics to those
systems.

More precisely, a dispersing billiard (or two dimensional periodic Lorentz gaz) is a
set Q = T? \ B, where B = I_Izngi for some integer D, and the B;’s are disjoint closed
domains, stricly convex with C® boundaries. The B;’s are called scatterers. The billiard
flow ¢; is the motion of a point particle travelling at unit speed on ) and doing specular
reflections off the boundary of the scatterers. By identifying the incoming collisions with
the outgoing ones in Q = Q x $!, ¢; is a continuous flow. Nonetheless, at grazing collisions
— those tangential to a scatterer — the flow is not differentiable, its derivative is actually
unbounded at those singularities.

Notice that the boundary of the scatterers, after identification, M is a section for ¢,
and when the first return time function 7 is bounded ¢; is actually the suspension of the
first return map 71" to M under the time 7. The map T is called the collision map, and is
discontinuous at grazing collisions.

Since ¢; and T are derived from models from classical mechanic, they both preserves
some volume measures (which are SRB measures). It is by the mean of the those mea-
sures that ¢; and T have first been extensively studied. Those measures are ergodic,
K-mixing [Sin70,BS73,SC87], and even Bernoulli [GO74,CH96]. They also have stronger
statistical properties. Both are exponentially mixing [You98,DZ11,BDL18]. Chronologi-
cally, Young was the first to prove the exponential mixing for the SRB measure of T'. It
was through the development of a new technique: the Young towers. Only a year latter,
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she introduced again a new technique, borrowed from the probability theory: coupling,
and derived again the exponential mixing. Latter, Dolgopyat simplified this argument.
Finally, Demers and Zhang contructed anisotropic Banach spaces on which the transfer
operator associated to T' is quasi-compact and has a spectral gap. The exponential mixing
of the SRB measure of the flow is a recent result, which also relies on the construction of
anisotropic Banach spaces of distributions.

Until very recently, only some perturbations of the SRB measure have been stud-
ied [CWZ17,DRBZ18], and not so much for other invariant measures.

Baladi and Demers [BD20] introduced Banach spaces such that the weighted transfer
opertor Ly — weighted in a way measure of maximal entropy are expected to be obtained
— satisfies (degenerated) Lasota—Yorke type inequalities. To do so, Baladi and Demers
need two technical assumptions: the first one is that the billiard must have finite horizon
in the sense that no orbit makes only grazing collisions — in particular, the return time
7 is bounded. The second assumption quantifies the recurrence of the singular set: for
vo S /2, we say that a collision is pp-grazing if the angle it makes with the normal
to the scatterer is greater (in absolute value) than ¢g. For all ¢y and ny > 1, define
s0 = so(no, o) to be the maximal frequency of pg-grazing collisions in ngy consecutive
collisions. The sparse recurrence assumption from [BD20, Eq. (1.5)] is then

Elgoo,no, h. > sglog2,

where h, is a quantity which coincides with the topological entropy as defined by Bowen.

Although Ly is not a priori quasi-compact, Baladi and Demers managed to construct
left and right eigenvectors of £y associated to the eigenvalue e*. They show that by pairing
these vectors, one obtains a Radon measure p., that is K-mixing, Bernoulli, adapted and
has maximal entropy. Finally, they prove that u, is the unique measure of maximal entropy
of T.

The decay of correlation for . have then been studied by Demers and Korepanov [DK22].
They prove that the mixing is polynomial for Holder observables, as well as the Central
Limit Theorem.

Using similar spaces as in [DZ11], Baladi and Demers [BDyn] constructed equilibrium
states u; for each potential —tlog J“T', 0 < t < t,, for some determined constant ¢, > 1.
Here again, the construction relies on the study of a weighted transfer operators £, acting
on anisotropic Banach spaces of distributions. In this case, for each ¢, £; satisfies a
Lasota—Yorke type inequality, hence L; is quasi-compact. Baladi and Demers then prove
that £; has a spectral gap, which in particular implies that p; has exponential mixing.

In this thesis (Chapter 3), we construct equilibrium states associated to piecewise
Holder potentials g satisfying additional assumptions. To do so, we use the same spaces B
and B, as in [BD20]. The transfer operator used is defined first on C! functions by

Ly(f) = (eg J{T> o771

We also introduce a definition of topological pressure P, (T, g) which coincides with the one
formulated by Bowen. In the case g = 0, this quantity coincides with h, used in [BD20].

Recalling A = 1 4+ 2KminTmin > 1 the minimal expansion factor of T, we can state our
first result as follows.
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Theorem 1.4.2. If g is a piecewise Holder potential such that P.(T,g) —sup g > solog2
and log A > sup g — inf g, then there exists a unique equilibrium measure jiy. Furthermore
g 98 Bernoulli, T-adapted and has full support.

When h, > sglog2, there exist a neighbourhood of the zero potential satisfying the above
assumptions.

We also introduce two technical assumptions, SSP.1 and SSP.2 — which stand for small
singular pressure — so that when the condition log A > sup g — inf g is replaced by SSP.1,
then the measure pg4 is only T-invariant and T-adapted. When log A > supg — inf g is
replaced by SSP.2, then the conclusions of Theorem 1.4.2 hold.

Furthermore we prove that

Theorem 1.4.3. a) If g satisfies the conditions Py(T, g) —sup g > solog2 and SSP.2, then
in the coordinates of the suspension, the measure fiyz = (pg(7)) ‘g @ X is a flow invariant
measure. Furthermore [iy is Bernoulli, flow-adapted and has full support.

b) The set of equilibrium measures of T under the potential —hyop(P1)T is in bijection with
the set of measures of maximal entropy for ¢;.

Chapter 4 is dedicated to the proof of the existence of a measure of maximal entropy for
the billiard flow. As claimed in Theorem 1.4.3b), this is equivalent to prove that 7" admits
equilibrium measures under the potential —hop(¢1)7. To do so, we rely on the fact that
t — P(T, —t7) + tTmin is decreasing and that Py (7', —htop(¢1)7) = 0. Therefore, assuming
htop (1) Tmin > Solog 2, we get that P (T, —t7) + tTmin > Solog2 for all 0 <t < hiop(¢1).
Then, we bootstrap from Theorem 1.4.2 by considering the supremum t,, of the ¢’ such
that for all 0 < ¢ < ¢/, —t7 has SSP.2. Thanks to Theorem 1.4.2, to, > 0. Finally, assuming
too < htop(¢1) leads to a contradiction: using the Holder inequality, we are able to construct
a to > to which contradicts the maximality of t.

In other words, we prove

Theorem 1.4.4. If hiop(¢1)Tmin > Solog 2, then there exists a unique measure of mazimal
entropy for the billiard flow. Furthermore, it is Bernoulli, flow-adapted and has full support.
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Chapter 2

Logarithmic bounds for ergodic sums of certain flows on the
torus: a short proof

Abstract

This chapter contains the results of [Car22a](published in QTDS). We give a short
proof that the ergodic sums of C! observables for a C! flow on T? admitting a closed
transversal curve whose Poincaré map has constant type rotation number have growth
deviating at most logarithmically from a linear one. For this, we relate the latter
integral to the Birkhoff sum of a well-chosen observable on the circle and use the
Denjoy-Koksma inequality. We also give an example of a nonminimal flow satisfying
the above assumptions.

2.1 Introduction

Since the work of Furstenberg [Fur73], it is known that the classical horocycle flow of
a compact surface of constant negative curvature is uniquely ergodic — it has only one
invariant Borel probability measure. This flow is related to a hyperbolic one, namely the
geodesic flow, in the sense that the horocycle orbits are the unstable manifolds for the
geodesic flow.

Using Symbolic Dynamics arguments (resp. equicontinuity of some functions), Marcus
[Mar75a] (resp. [Mar75b]) generalized this result to the flow generated by the orientable
one-dimensional unstable foliation of a connected basic piece of an Axiom A diffeomorphism
(resp. flow). Later, Bowen and Marcus [BM77] extended this result to the higher dimensional
strong stable or strong unstable foliation of a basic set for an Axiom A diffeomorphism or
flow.

In their pioneer work, Giulietti and Liverani [GL19] focused on the one-dimensional
stable foliation of a C" Anosov diffeomorphism F of the two-torus, inducing a flow h! called
the Giulietti-Liverani (stable horocycle) flow (of F'). Giulietti and Liverani proved that

0. I thank S. Ghazouani for allowing me to use his idea for the proof and Y. Coudéne for many useful
comments. Research supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 787304).
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this flow is uniquely ergodic, minimal and that it admits a closed transverse curve such
that the rotation number of the first return map to this curve is of constant type. For
more basic facts about this flow, see [Ball9, Appendix A].

For any continuous function f : T? — C, any T > 0 and any = € T?, define the
horocycle integral Hy 7(f) = fOT f(ht(z))dt. By unique ergodicity, we have for any such x

and f,

tim Z=TU) gy /qu fdp,

T—o00 T

where i is the unique invariant probability measure of the flow A'.

For large enough r, Giulietti and Liverani introduce a transfer operator for F' on some
suitable Banach space. Using eigenvectors of the dual operator associated to eigenvalues
with modulus larger than the essential spectral radius (Ruelle resonances), they give an
asymptotic expansion of H, r(f) [GL19, Theorem 2.8]. The dominant term is the term
Tp*(f), corresponding to the trivial resonance \g = eor, where hiop is the topological
entropy of F'. This expansion also involves a negative power law error term. A simpler
asymptotic expansion, in the case where all Ruelle resonances of the transfer operator have
trivial Jordan blocks, can be found in [Ball9, Equation (1.2)].

In their recent works, V. Baladi [Ball9] and G. Forni [For20] independently proved that
horocycle integrals (in the set-up from [GL19]) do not have deviations, in other words the
expansion is limited to the linear term with a bounded remainder. Their proofs are quite
different: V. Baladi proves the strong result that the map F' does not have non-trivial
Ruelle resonance, while G. Forni uses the action of the (pseudo-)Anosov diffeomorphism on
the first cohomology — in the more general setting of surfaces of genus g > 1 (non-trivial
Ruelle resonances can appear only for g > 2).

In this note we give a new, much shorter, proof of the absence of deviations for horocycle
integrals by considering a slightly more general setting: we no longer assume that the flow
can be obtained from the stable foliation of an Anosov diffeomorphism. Instead, we only
assume that the flow can be recovered from the suspension of a circle diffeomorphism whose
rotation number is of constant type. In particular, these flows are uniquely ergodic. For
clarity, we call “ergodic integral” for this type of flows the quantity defined as “horocycle
integral” previously.

We give an elementary proof that the ergodic integral of a C' observable along the
trajectory of such a flow on the two-torus grows at most logarithmically if the observable
has zero average with respect to the unique invariant measure of the flow. This is the
content of our main theorem (Theorem 2.2.2).

When comparing this estimate to the asymptotic expansion given by Giulietti and
Liverani [GL19, Theorem 2.8], this result gives a new proof of the absence of deviations for
the horocycle integral.

Finally, we prove that the class of flows we consider here is strictly larger than the class
of flows studied by Giulietti and Liverani by constructing a flow satisfying our assumptions
but which is not minimal — in contrast to all flows in [GL19]. This is the content of
Theorem 2.3.1.
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2.2 Main result

Given a flow hy on the two-torus, we call ergodic integral of an observable f: T? — R at
z € T? and T > 0 the quantity H, r(f) = fOT fohy(x)dt.

Recall the following classical theorem — we give a short proof of this fact using results
from [KH95] in order to introduce notations for our main result. In particular the theorem
below gives a simple sufficient condition for a flow to be written as the suspension of a

circle diffeomorphism.

Theorem 2.2.1. If h; is a C* flow on the torus T? without critical points nor periodic
orbits, then there exists a smooth closed curve v transverse to hy such that hy is smoothly
conjugated to the suspension of the first return map R: v — 7.

Moreover, the flow hy is uniquely ergodic, with a unique tnvariant measure (.

Recall that an irrational number is of constant type if the sequence (ay)y, of its coefficients
in its continued fraction expansion is bounded. We can now state our main result, using

notations from the previous theorem.

Theorem 2.2.2. If h; is a C' flow on the torus T? without critical point nor periodic
orbit, and if the rotation number of the Poincaré first return map R is of constant type,
then there exist constants K1 and Ky such that for any C* observable f with [ fdu =0,
any x and any T > 0,

|He ()] < K| fllerlog(1 +T) + Kzl[ f]ler-

More precise versions of that estimate in the case of Giulietti-—Liverani flows can be
found in [Ball9] and in [For20]. The bound obtained by V.Baladi [Ball9] is much tighter —
but the proof is longer — while the estimate given by G.Forni [For20] applies to flows on
higher genus surfaces.

Proof of Theorem 2.2.1. By the Birkhoff recurrence theorem, any continuous transforma-
tion of a compact space has a recurrent point. Hence h; has recurrent orbits. In particular
the flow h; also has recurrent points. By our assumptions on the flow, these orbits cannot
be periodic. Hence, by [KH95, Propositions 14.2.1 and 14.2.3] there exists a smooth closed
curve v transverse to hy and parametrised by $' such that every orbit of h; intersects ~.
We can therefore apply [KH95, Corollary 14.2.3] to get that h; is smoothly conjugated to
the suspension flow of the first return map R to . The conjugation is C!, since the change
of coordinates is (6,t) — h(6).

The map R : $' — 3! is a C! diffeomorphism of the circle which has no periodic point.
It is a classical result — see [CFS82, Theorem 3.3.5] — that R is uniquely ergodic, with
invariant measure v, and that its rotation number is irrational. From this, we deduce that

h; is uniquely ergodic, with a unique invariant measure . O
We can now give the proof of our main result.

Proof of Theorem 2.2.2. Suppose that the rotation number w of R is of constant type. In
order to prove the estimate, we will compare the ergodic integral to the Birkhoff sum of an
appropriate function.

Let u : $' — R, be the first return time function to v, and let f : T? — R be a
C'-observable such that Jp2 fdp = 0. By construction, v is a smooth curve, uniformly
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transverse to the flow, hence the function u is of class C'. Define the C! observable g on
by the formula

g(z) = /0 fohy(x)dt.

To estimate the ergodic integral of f by the Birkhoff sum of ¢ under the map R, we
use the following lemma.

—1<n<

Lemma 2.2.3. For all x € v and T > 0 there exists n satisfying
and such that

5up(u)
< sup(u)sup | f|.

n—1
|Hx,T<f> ¥ go R )
k=0

For all y € T? there is 0 < T < supu and x € v such that y = h.(x) and

|He 14 (f) — Hyr(f)] < sup(u) sup | f].

n—1
Proof. We first determine n. Since infu > 0, there exists n such that > uo RF(z) <
k=0

T < Z uo RF(z). Hence ninfu < T and (n + 1)supu > T. Both estimates on ergodic
n J—

1ntegrals then follow from the fact that hy(R"(x)) = hHZZ;; u(Rk(x))(x) for all z € v and

all t € R. O
In order to conclude by applying the Denjoy—Koksma theorem [Her79, Theorem VI.3.1],

we also need the following lemma.

Lemma 2.2.4. Ifw =1[0,aq,...,ak,...] is of constant type then for any integer n > 1 there

exists integers N and (ni,...,ny) such thatn —1 = Z ngqr, where p’“ =10,a1,...,ax].

Furthermore, we can choose N < 4log(n)/log(2) and nk B for all k, where B is a bound

on the coefficients (ax)g>1-

Proof. Since the sequence (qx)r>0 satisfies the recursion formula g1 = apqy + qr—1 with
qo = 1 and ¢1 = a1, we get by induction that 2% < qi. Therefore, there exists N such
that gy < n —1 < gn41 with the estimate N < 4log(n)/log(2).

Define inductively the sequences (rx)o<k<n+1 and (ng)o<k<n by rv41 :=n—1 and the

Euclidean division ry1 = ngqi+75, with 0 < rp < gx. Clearly, we get that n—1 = Z NEqk

(because gy = 1). By contradiction, suppose there exists k such that ny > B + 1. Then
Thl = M@ + 75 > (B + D)ge + 715 > ap1qe + @1 + Tk = Qg1 + Tk
Therefore ri41 > qx+1, which is a contradiction. Hence ng < B for all k. ]

For completeness, we state the Denjoy—Koksma inequality:

Theorem 2.2.5 (Denjoy—Koksma inequality). Let f be a homeomorphism of the circle
with an irrational rotation number p(f). Let p be a measure invariant by f, and let p/q be
such that ged(p, q) = 1 and |qp(f) —p| < 1/q. Then for all potential ¢ of bounded variation

and all x € 8!, |Z<p0fk ) —q [ edu| < Var(e).
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Since g is C?, it is of bounded variation. In addition, the denominators (q)x>0 associated
to w satisfy the assumption |grw — px| < 1/gx for some integer py coprime with gx. We can
therefore apply the Denjoy—Koksma theorem to g, R and any gj. Furthermore notice that,
by construction, g is of v-average 0: indeed, let M = {(z,t) | x € 7, t € [0,u(x)]}/ ~, with
(z,u(x)) ~ (R(x),0), be the space such that h; is conjugated with its unit speed vertical
flow. Let g be the image of u by the conjugacy map. Thus, i is invariant by the vertical

flow and so it must be of the form i = fi SV ® dt, where v is invariant under R. By

unique ergodicity of R, we have = v. Thus

0= [, fdu= [ fiu()dita.0

_ f;@/y/;w Flhe(z)) dt dv(z) = fuldy/gdv-

Fix z € T? and T > 0. By Lemma 2.2.3, there exist a point y € v and an integer n
from which we can estimate the ergodic integral of f at z and T with the Birkhoff sum
of R at y. In order to assume that n > 1, we assume that 7" > 2supu (otherwise, the
theorem holds with K7 = 0 and some K3 > 0 depending only on u). By Lemma 2.2.4 we
can decompose n — 1 as a sum from which we deduce the equality

-1

n—1 i N n—1q—1 N mq+Y | nigi
ZQOR(y):ZZZgOR R =0y
k=0 =0 m=0 k=0

From the Denjoy-Koksma inequality, for all 0 <1 < N, all 0 < m < n; and all y in ~,
-1

a-! k mq+  nigi
Z goR¥| R =0y || < Var(g),
k=0

we deduce the estimate

n—1

4B 4B T
Z go RF(y)| < NBVar(g) < M logn < Var(g) og - .
= log 2 log 2 inf(u)

Hence the result,

n—1

> goRM(y)

k=0

n—1

Hy,T—T(f) - Z go Rk(y)

k=0

| He o (f)| < [Hao(f) = Hyr—(F)] + +

I

4B Var(g)

T 3 5
2 — KilogT + Ko.
g2 %% ini(u) + 2sup(u) sup | f| 1log T + Ky

We can bound the total variation Var(g) by the product of the length of v with |[g'||co(y)-
By the definition of g, we get

19 llcoyy < Mlw'lleoyy [1flleo + [lulleoplldfllco  sup [|dhe|co.

o<t<ull o)

Notice that ||u'||co(yy and ~ sup  [|dh[|co only depend on the flow h; and on . Hence
o<t<]fullco

there exist constants K, and K» that depend only on h; such that K; < Ki||f]|cr and
Ky < K| fller- O
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Finally, remark that in order to get a rotation number of constant type, the condition
for the flow not to have periodic orbit is necessary: otherwise the existence of a transverse
curve < is no longer guaranteed. If such a curve exists then the first return map R has a
periodic point, hence has a rational rotation number.

2.3 A nonminimal flow satisfying the assumptions of Theo-
rem 2.2.2

We finish this note by proving that the class of flows we are working with is strictly larger
than the class of flows studied by Giulietti and Liverani which are necessarily minimal. The
proof relies on constructing a family of C! nonminimal flows. By [KH95, Proposition 14.2.4],
these flows are less than C2.

Theorem 2.3.1. There exists a flow on T? satisfying the assumptions of Theorem 2.2.2
that is not minimal. Furthermore, the flow can be chosen to be renormalized by an Axiom
A diffeomorphism.

Notice however that all flows satisfying the assumptions of Theorem 2.2.2 are obtained
by suspending circle diffeomorphisms of irrational rotation numbers, and thus are minimal
on the support of their unique invariant measure.

Without the last condition of renormalization, we can simply construct such a flow by
taking the suspension of a Denjoy counter-example whose rotation number is of constant
type. Such circle diffeomorphisms exist by the original construction of Denjoy, which
works for any irrational rotation number. For an expository on the construction of Denjoy
counter-examples, see for example! [Ath15]. However, there is no reason for the flow
obtained by suspending a Denjoy counter-example to be renormalized by an Axiom A
diffeomorphism. Adding this condition, the flow falls into the category of W*-flows studied
by Marcus in [Mar75a], in the particular case where the phase space of the flow is the same
as the one of the Axiom A map — in opposition with just the set of nonwandering points
of the map. Finally, results on Ruelle spectrum and dynamical determinants for Axiom A
diffeomorphisms can be found in [BT08, DR21] (and results on dynamical zeta functions
for Axiom A flows in [DG18]), but asymptotic expansions of ergodic integrals associated to
WU-flows using transfer operator techniques are still quite rare in literature and there is
room for work to be done in this setting.

In order to build a flow satisfying this last condition, consider the derived from Anosov
transformation on the two-torus studied in [Coul6, Chapter 9] and [Cou06]. Recall some
notation. Starting from Arnold’s cat map (case = 0) in the diagonalized form, and

2
adding a bump in the unstable direction, let fz : [—%, %} — RR? be as follows

2N 1 (A -1 )\2+ﬁk(vxzﬂ’2> 0 V(A 1\(z
Ts y) 1T+ A2\1 A 0 2/ \—1 A \y)’

where A = %, —)\2 < B < 0and k is an even, unimodal function supported in [—1, 1] such
that k(0) =1 - e.g. k(r) = (1—r?)*1(_11;(r) - so that the map fg is invariant by the action

of Z? and induces a map, also called fg, on the torus T?. It is shown in [Coul6, Chapter

1. T thank Selim Ghazouani for indicating me this reference.
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9] that f3 is a diffeomorphism of class C! of the torus and if —A\? < 8 < =A% + 1 then the
origin is an attractive hyperbolic fixed point. Let K3 be the invariant subset defined as
the complement of the basin of attraction of 0. This map is an explicit example of Smale’s
derived from Anosov transformation as introduced in [Sma67, Section 1.9], here obtained
by perturbing Arnold’s cat map.

A -1
R U _ 1 . . ,
Let e, = NAESY <1> and eg; = m( 3 ) be unitary eigenvectors of the matrix
2 1
A= ) 1) respectively associated to eigenvalues \?> and A\~2. Since A is symmetric,

notice that (ey,es) is an orthonormal basis. In this basis the Jacobian matrix of fz is

Jac(f3)(x) = (“ﬁéx) bﬁ(_ﬁ))-

Since the Jacobian is upper-triangular, lines spanned by e, are stable by fz. Assuming
that k satisfies also k +id k' < 1, f3] K, expands uniformly the direction spanned by e,.
In order to construct a stable foliation over Kpg, for X a vector field, denote (fz).X(x) =
(dxf5) 1 X (f(z)) to be the pullback of X by fg. Formally, if v = nll)]grrloo A72(f5)" X, then
)\_2(f5)*v§ = vj, or in other words d; fg vj(z) = )\_%g(f(m)), vj is uniformly contracted
by dfs. For the constant vector field X = ey, formally we get

vsxzes—oo)f%b bz l¥
o) =es =2 haBn I s

This equation being only formal, we need to check that the series inside it converges. Since

ew, x€ T2 (2.3.1)

bz is bounded and ag > 1 on the compact set Kg, (2.3.1) defines a vector field on Kjg,
uniformly contracted by fg:

de fo v3(x) = A203(f3(x)) (232)

for all # € K. It is shown in [Car21, Theorems 3.3 and 3.6] — in a slightly more general
context — that (2.3.1) defines a Lipschitz continuous vector field on T? for any fixed /3 in
] = A2+ A7%,0] and that the map (z,3) v () is continuous on T2x ] — A2+ 2"4,0]. Let
h¢ be the flow generated by v for some fixed X2+ 2t < By < =A2 4+ 1. In fact, if we
choose for the function k any C? unimodal and even function supported in [—1,1], equal to
1 at 0 and satisfying k + id k¥’ < 1, the induced vector fields UZ; enjoys the same properties
as before, but they are also C! — see the discussion in [Car21, Theorem 3.7] — hence the
flow h; is also C'. We make such a choice for k. We claim that this flow h; satisfies the
condition of Theorem 2.2.2 and that it is not minimal.

In order to prove this result, we first construct a closed transversal curve v. We then
construct a particular homotopy between the first return map and a rigid rotation, where
none of the in-between map has a periodic point. From the continuity of the rotation
number, it is enough to compute the rotation number of the rigid rotation, which happens
to be a quadratic integer. The nonminimality follows from the invariance of the proper
closed set Kg, by the flow h;. First we need the following lemma.

Lemma 2.3.2. The flow hy does not have periodic orbit. This is also true for the flow
generated by vj for any XM+t <p<go.
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Proof. By construction, each vector field v satisfies d, fg(vi(z)) = )F%E(fg(m)). By
differentiating fg, o h¢(x) and hy-2; o fg,(x) according to ¢, we get that these two functions
satisfy the same Cauchy problem for all z € T2, thus the relation

Jo 0 e = 2,0 (2.33)

holds by uniqueness of the solution (because vj is Lipschitz continuous). Therefore, if
by contradiction h; has a periodic orbit, by applying fgo, for n large enough, we get an
arbitrarily short periodic orbit for the flow. This contradicts the fact that the component
along e, in the basis (e, es) of vgo is constant equal to 1. ]

Proof of Theorem 2.5.1. Since the map (z, 8) — vj(z) is continuous on the compact set
T2 x [0, 0], the component of these vector fields in the basis (e, es) along e, is uniformly
bounded and along ey is equal to 1, by definition. Therefore, there exists a vector w of

rational slope, say w = \/}721Tt]2 Z , where p and g are coprimes, so that w is uniformly

transverse to vj for all 8 € [y, 0]. Define v to be the closed curve passing through (0, 0)
and with slope p/q. By choice of w, the curve 7 is transverse to vj and so for every j in
[Bo,0]. We can naturally parametrize v by $.

Let R : 8! — $! be the first return map to v of h;. Notice that performing a time
change on this flow does not affect the first return map R, but only the first return time
function w. In order to simplify computations, renormalize the vector fields as follows

1
wp = 7@%7 wi> V3

so that, for each 3, the flow ¢§5 ) generated by wj has a constant first return time function
ug = 73, where w™ is the unitary vector equal to w rotated by an angle 7/2. These first
return time functions do not depend on 3, in other words 74 = 7. Since by = 0, notice that
w§ is a constant vector field (equals everywhere to eg), hence its first return map to v is a
rigid translation Rq : @ — x + . Introduce also the notation R(?) for the first return map
to v of ¢§5). In particular R = R(%) and R, = R,

By [Car21, Theorem 3.10], the map 3 — vj is continuous for the C%-topology on
the space of vector fields. From a Gronwall type argument, we get that 3 — R is
continuous for the CO-topology. Now, by [Her79, Proposition 11.2.7], the map 8 — p(R?)
is continuous, where p(R(®) stands for the rotation number of R(®). In order to prove that
p(R) = o, we prove that p(R(®)) cannot be rational, but this directly follows from Lemma
2.3.2. Hence § — p(RP) is a constant map and p(R) = a.

We now compute the value of a. Consider lifts w(so), 4 and éﬁo) to R? of respectively

wg, v and (;SEO). Let (O, dy) be the canonical basis of R?. Notice that the arc {&EO)((O, 1)) |
—p7 < t < 0} starts at the point (0,1) and ends on the branch of 4 containing (0,0) at
some point cw, for some ¢ > 0. The coordinates of this intersection point satisfy the system
of equations

—pr{wiy), 0e) = cq(p? + ¢*) /2

1- p7<wfo),8y> =cp(* +¢*) %,
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where (-, ) denotes the usual scalar product. Now, notice that ¢/|y| = —pa, where || is
the length of the closed curve «v. We can solve these equations for « and get
1 1

o = —
_ P
pgA—§

which clearly is a quadratic integer, since A is. Therefore « is of constant type.

The nonminimality of h; is ensured by properties proven in [Coul6, Chapter 9]. More
precisely, let U be the basin of attraction of (0,0) for fg, and K be its complement in the
torus. In [Coul6, Chapter 9], Coudéne proved that the set K is nonempty and that U and
K are invariant by fg,. Now, because of (2.3.3), the sets U and K are invariant by the
flow hy.

Finally, the map f is an Axiom A diffeomorphism since f is transitive [Coul6, Chapter 9]
on the hyperbolic set K [Car21, Theorem 2.9]. Therefore, by the shadowing lemma, periodic
points are dense in the compact invariant set K which coincides with the nonwandering
set of f. O
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Figure 2.1 — Representation of the minimal component K of the flow (h;). Underneath is
the vector field v® generating the flow.

Finally, we give in Figure 2.1 a representation of the set K. In [Coul6, Chapter 9], it
is proven that K is the closure of the stable leaf W*(p) of a hyperbolic fixed point p for
f8,- From the relation (2.3.3) and the Hartman-Grobman theorem, it follows that this
stable leaf is equal to the orbit of p by the flow h;. From [CFS82, Theorem 3.3.4], the set
K N~ coincides with any w-limit set and any a-limit set of R. Therefore, the set K is the
minimal component of h; and is also an attractor for both positive and negative times.
Moreover, K is also the support of the unique invariant measure p of h;.

2.A Alternative proof of Theorem 2.3.1 from semi-conjugacy

We give an alternative proof of Theorem 2.3.1. More precisely, we use the same example,
but we compute the rotation number in a different way: we construct a semi-conjugacy
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map h so that ho R = R, o h. It will follow that the rotation number of R is a. The
construction of & is inspired from the proof of [Yoc05, Proposition 7).

Proof. Exactly as in the first proof of Theorem 2.3.1, we construct the closed transversal
curve v and we renormalize the vector fields vj 80 that the time of first return function to
~ of their associated flows is constant. The computation of o remains the same, and we
get that « is a quadratic integer, hence « is of constant type. In particular, the rotation
R,, is minimal.

We now prove that the first return map R of h; is semi-conjugated to R,. To this end,
we construct a surjective and continuous function h of the circle.

Let h(R™(0)) = R2(0) for all n € Z. This map is well defined since h; has no periodic
orbit by Lemma 2.3.2, so does R. In order to extend h into a continuous map, we first
prove that it preserves order of triplets. Fix an orientation of ' — and therefore of
— seen as R/Z. Let x; .= R™(0), x2 := R™(0) and z3 := R™(0) be so that (z1,x2,z3)
is an ordered triplet of 3! — we can assume that n;, ny and ns3 are distinct. We prove
that the triplet (z},x%,2%) = (h(x1),h(x2),h(x3)) is also ordered. Consider the family
of curves ¢z = {Qﬁgﬁ)(()) | min(ny,ng,n3)7 < t < max(ni,n2,n3)7}. By continuity of
(z,8) — wg(:):), this family depends on f in a continuous fashion.

Notice that points z1, x2 and x3 correspond to some intersection points between ¢g,
and v, and that points z, 2, and 2% correspond to some intersection points between ¢
and 7. Furthermore, we can connect z; to ) (respectively x5 to zf, and z3 to x%) with
intersection points between v and ¢g when varying the value of 5. Therefore we can track
the evolution of (z1,z2,z3) with continuous functions (z1(8), x2(8),x3(5)) of B such that
x1(Bo) = x1 and z1(0) = 2} — and similarly for zo(8) and z3(3).

By contradiction, suppose that the triplet (2, 5, 2%) is not ordered. By continuity, this
means that for some value of 1 in [fy, 0] and without loss of generality z1(81) = z2(51).
In other words, this means that the first return map to ~ of qﬁtﬂ " has a periodic point,
which contradicts Lemma 2.3.2.

Therefore, the map h can be lifted into a “degree” one, increasing, function h :
7 YR"0) | n € Z} — 7 Y{R*0) | n € Z}, where 7 : R — R/Z is the canonical
projection. In other words, moh = hom and h(z 4+ 1) — h(x) = 1 for all z where A is defined.
By minimality of Ry, the range of & is dense in R. Hence, we can uniquely extend A by
a continuous, increasing and surjective function i : R — R. Its projection on the circle,
still noted h, is also continuous and extends h into a degree one map of the circle. By
continuity of R and of R, we get that ho R = R, o h. Therefore, by [Her79, Proposition
11.2.10], the rotation number of R is «, a quadratic integer.

The nonminimality of h; is ensured by properties proven in [Coul6, Chapter 9. [

Remark 2.A.1. The construction of the conjugacy map h comes from the following heuristic.
Since the stable manifold of 0 under the cat map is blown up into an open set, the basin
of attraction Ug := T2\ K g of 0 under fg, we expect that the map h relates the orbit of
0 under R, with the orbit of I under R, where I is the connected component of v N Up
containing 0 (notice that I is a wandering interval and that its orbit under R is v N Usg,
which is dense in 7). More precisely, we expect h to be similar to the Cantor staircase
function, being constant when restricted to each R™(I). As in the construction of the
Cantor staircase function, we only need to know the values of h where it is constant, as
long as h is non-decreasing and that this set of values has a connected closure. In the proof
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above, we chose to define h first by setting h(z,) = Ry(0) with z,, = R"(0), but we could
have chosen any sequence z,, € R™(I).
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Chapter 3

A family of natural equilibrium measures for Sinai billiard
flows

Abstract

This chapter contains the results of [Car22b]. The Sinai billiard flow on the two-torus,
i.e., the periodic Lorentz gaz, is a continuous flow, but it is not everywhere differentiable.
Assuming finite horizon, we relate the equilibrium states of the flow with those of
the Sinai billiard map T — which is a discontinuous map. We propose a definition
for the topological pressure P, (T, g) associated to a potential g. We prove that for
any piecewise Holder potential g satisfying a mild assumption, Py (T, g) is equal to the
definitions of Bowen using spanning or separating sets. We give sufficient conditions
under which a potential gives rise to equilibrium states for the Sinai billiard map. We
prove that in this case the equilibrium state p4 is unique, Bernoulli, adapted and gives
positive measure to all nonempty open sets. For this, we make use of a well chosen
transfer operator acting on anisotropic Banach spaces, and construct the measure by
pairing its maximal eigenvectors. Last, we prove that the flow invariant probability
measure [ig, obtained by taking the product of ;1, with the Lebesgue measure along
orbits, is Bernoulli and flow adapted. We give examples of billiard tables for which
there exists an open set of potentials satisfying those sufficient conditions.

3.1 Introduction

3.1.1 Billiards and equilibrium states

In this work, we are concerned with a class of dynamics with singularities: the dispersing
billiards introduced by Sinai [Sin70] on the two-torus. A Sinai billiard on the torus is
the periodic case of the planar Lorentz gaz (1905) model for the motion of a single dilute
electron in a metal. The scatterers (corresponding to atoms of the metals) are assumed

0. JC is grateful to ITS-ETH Zurich for their invitation in May 2022. Thanks to Viviane Baladi, Mark
Demers and Alexey Korepanov for useful discussions and comments. Research supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 787304).
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to be strictly convex (but not necessarily discs). Such billiards have become fundamental
models in mathematical physics.

To be more precise, a Sinai billiard table @ on the two-torus T? is a set Q = T? \ B
with B = U2, B; for some finite number D > 1 of pairwise disjoint closed domains B;,
called scatterers, with C® boundaries having strictly positive curvature — in particular,
the scatterers are strictly convex. The billiard flow ¢; is the motion of a point particle
travelling at unit speed in ) with specular reflections off the boundary of the scatterers.
Identifying outgoing collisions with incoming ones in the phase space, the billiard flow is
continuous. However, the grazing collisions — those tangential to scatterers — give rise to
singularities in the derivative [CMO06]. The Sinai billiard map T" — also called collision map
— is the return map of the single point particle to the scatterers. Because of the grazing
collisions, the Sinai billiard map is a discontinuous map.

Sinai billiard maps and flows both preserve smooth invariant probability measures,
respectively pusgp and fisgp, which have been extensively studied: (7', usgs) and (¢, fisrB)
are uniformly hyperbolic, ergodic, K-mixing [Sin70,BS73,SC87], and Bernoulli [GO74,CH96].
The measure uggrp is T-adapted [KKSLP86] in the sense of the integrability condition:

/ log d(2, Se1)| dptss < 50,

where Sy is the singularity set for 7!, Both systems enjoy exponential decay of cor-
relations [You98,DZ11]. Since the billiard has many periodic orbits, it thus has many
other ergodic invariant measures, but until very recently most of the results apply to
perturbations of pggrs [CWZ17, DRBZ18].

In the case of an Anosov flow, it is known since the work of Bowen [Bow72b] that
the Kolmogorov-Sinai entropy is upper-semicontinuous, which guarantees the existence
of measures of maximal entropy, or more generally, of equilibrium states. Because of the
singularities, billiard flows are not Anosov and therefore methods used in the context of
Anosov flows cannot be applied easily. The upper-semicontinuity of the entropy is not
known at the moment, and, more generally, the existence of equilibrium states has to be
treated one potential at the time.

In a recent paper, Baladi and Demers [BD20] proved, under a mild technical assumption
and assuming finite horizon, that there exists a unique measure of maximal entropy p. for
the billiard map, and that u. is Bernoulli, T-adapted, charges all nonempty open sets and
does not have atoms. Their construction of this measure relies on the use of a transfer
operator acting on anisotropic Banach spaces, similar to those used by [DZ11] in order to
study psrs. Combining their work with those of Lima—Matheus [LM18] and Buzzi [Buz20],
Baladi and Demers proved that their exists a positive constant C' such that

Ce™ < #FixT™, Vm>1, (3.1.1)

where #Fix T"™ denotes the number of fixed points of T, and h, is the topological entropy
of the map T from [BD20]. Baladi and Demers also give a condition under which p, and
lsrp coincide.

In a subsequent paper, Baladi and Demers [BDyn]| constructed a family of equilibrium
states p; for T' associated to the family of geometric potentials —t log J*T', where J“T is the
unstable Jacobian of T and ¢ € (0,t,) for some t, > 1. In the case t = 1, uy = pgrs. The
construction again relies on the use of a family of transfer operators £; acting on anisotropic
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Banach spaces. For each t € (0,t.), they proved that p; is the unique equilibrium state
associated with the potential —tlog J“T', that u; is mixing, T-adapted, has full support
and does not have atoms. Baladi and Demers also showed that each transfer operator
L; has a spectral gap, from which they deduced the exponential rate of mixing for each
measure i, for C' observables.

Even more recently, Demers and Korepanov [DK22| proved a polynomial decay of
correlations for the measure p, for Holder observables.

In this paper, we give a sufficient condition under which a piecewise Holder potential g
admits equilibrium states for 7. Under this assumption, we prove that the equilibrium
state is in fact unique, Bernoulli, T-adapted and charges all nonempty open sets. We prove
that its lift into a flow invariant measure is Bernoulli and flow-adapted. We also identify
the potential g = —hyop(¢1)7 to be such that its corresponding equilibrium states for 7' —
whenever they exist — are in bijection with measures of maximal entropy of the billiard
flow.

Notice that the geometric potentials —tlog J*T" are not piecewise Holder, and thus the
work of Baladi and Demers [BDyn] on those potentials is distinct from ours.

3.1.2 Statement of main results — Organization of the paper

Since transfer operator techniques are simpler to implement for maps than for flows, we will
be concerned with the associated billiard map T : M — M defined to be the first collision
map on the boundary of @, where M = 0Q x [—7/2,7/2]. We assume as in [You98, BD20],
that the billiard table @) has finite horizon, in the sense that the billiard flow does not
have any trajectories making only tangential collisions — in particular, this implies that the
return time function 7 to a scatterers is bounded.

The first step is to find a suitable notion of topological pressure P.(T,g) for the
discontinuous map T and a potential g : M — R. In order to define it, we introduce
as in [BD20], the following increasing family of partition of M. Let P be the partition

into maximal connected sets on which both 7" and 7! are continuous, and let P?, =

n
1=

% E?’:_Ol g oT" is the Birkhoff sum of g. We can thus define the topological pressure by

_«T7%P. Then the sequence Y. pepp SUPp e%n9 is submultiplicative, where S,g =

Definition 3.1.1. P,(T,g) = lim Zlog > suppe 9
n—-+00 PePy

Section 3.2 is dedicated to the study of this quantity. In particular, we prove (Propo-
sition 3.2.2) that whenever the potential g is smooth enough — piecewise Holder — and
P.(T,g) —supg > 0 then P.(T, g) coincides with both Bowen’s definitions using spanning
sets and separating sets. We also prove (Lemma 3.2.4) that for each T-invariant measure
w, we have Py (T, g) > h,(T) + [ gdp. Finally, we show that if g = —hiop(¢1)7 admits an
equilibrium state p4, then the measure jiy = (f Tdug)_l Hg @ A is a measure of maximal
entropy for the billiard flow, seen as a suspension flow over T, where A is the Lebesgue
measure in the flow direction.

To state our existence results (in Section 3.6), we need to quantify the recurrence to the
singular set. Fix an angle ¢ close to /2 and ny € N. We say that a collision is pg-grazing
if its angle with the normal is larger than ¢( in absolute value. Let sg = so(¢0,n0) € (0,1]
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denote the smallest number such that
any orbit of length ny has at most sgng collisions which are ¢g-grazing. (3.1.2)

Due to the finite horizon condition, we can choose g and ng such that sqg < 1. We refer
to [BD20, §2.4] for further discussion on this quantity. From [CMO06], A = 1 + KminTmin > 1
is the expanding factor in the hyperbolicity of T, where ki, is the minimal curvature of
the scatterers and Ty, is the minimum of the return time function 7. Define Sy = {(r, ¢) €
M | |¢| = 7/2} the set of grazing collisions, and S¢,, = U"_,TF'S, the singular set of T=".
Call N2(+) the e-neighbourhood of a set. Then

Theorem 3.1.2. If g is a bounded, piecewise Holder potential such that Py(T,g) —supg >
s0log2 and log A > sup g — inf g, then there exists a probability measure pg such that

(i) pg is T-invariant, T-adapted and for all k € Z, exists Cy, > 0 such that pug(N=(Sk)) <
Ck|loge|™7.

(i) pg the unique equilibrium state of T under g: that is Py(T,g) = hy,(T) + [ gdug
and Pi(T,g) > hu(T) + [ gdp for all p # pg.

(1i1) pg is Bernoulli' and charges all nonempty open sets.

If the assumption log A > sup g — inf g is weakened into the condition SSP.1 (as defined
above Lemma 3.5.2), then item (i) still holds. If the assumption log A > sup g — inf g is
weakened into the condition SSP.2 (as defined above Corollary 3.3.4), then items (i), (ii)
and (iii) hold.

The above theorem will follow from Proposition 3.6.1, Lemma 3.6.2, Corollary 3.6.14,
and Propositions 3.6.18, 3.6.15, 3.6.10. Furthermore, assuming the sparse recurrence to
singularities condition from [BD20], we provide in Remark 3.3.9 an open set of potentials,
each having SSP.1 and SSP.2.

The tool used to construct the measure p, is a transfer operator £, with L,f =
(fe9/J*T) o T~1, similar to the one used in [BD20] corresponding to the case g = 0. This
operator and the anisotropic Banach spaces on which it acts are defined in details in
Section 3.4. Section 3.3 contains key combinatorial growth lemmas, controlling the growth
in weighted complexity of the iterates of a stable curve. These lemmas will be crucial
since the quantity they control appears in the norms of the iterates of £,. In Section 3.5,
we prove a (degenerated) “Lasota—Yorke" type inequality (Proposition 3.5.1) — giving an
upper bound on the spectral radius of £, — as well as a lower bound on the spectral radius
(Theorem 3.5.3).

Section 3.6 is devoted to the construction and the properties of the measure p . From
the estimates on the norms from the previous section, we are able to construct left are
right maximal eigenvectors (7 and v) for £,. We construct the measure j, by pairing
these eigenvectors. We then prove the estimates on the measure of a neighbourhood of
the singular sets (Lemma 3.6.2). Section 3.6.3 contains the key result of the absolute
continuity of the stable and unstable foliations with respect to 14, as well as the proof that
g has total support — this is done by exploiting the v-almost everywhere positive length of
unstable manifolds from Section 3.6.2. In Section 3.6.4, we show that p, is ergodic, from

1. Recall that Bernoulli implies K-mixing, which implies strong mixing, which implies ergodic.
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which we bootstrap to K-mixing using Hopf-argument. Adapting [CH96] with modifications
from [BD20], we deduce from the hyperbolicity and the K-mixing that p, is Bernoulli.
Still in Section 3.6.4, we give an upper-bound on the measure of weighted Bowen balls,
from which we deduce, using the Shannon-MacMillan-Breiman theorem, that ug4 is an
equilibrium state for 7" under the potential g (Corollary 3.6.14). Finally, the Section 3.6.5
is dedicated to the uniqueness of the equilibrium state pg.

In Section 3.7, we prove using arguments from [CMO06] that (¢, fig) is K-mixing
(Proposition 3.7.1), and again, using the hyperbolicity of the billiard flow, we adapt [CHI6]
in order to prove that (¢, jig) is Bernoulli (Proposition 3.7.2). Finally, we prove that i, is
flow adapted in the sense of the integrability condition formulated in Proposition 3.7.4.
We summarize this results about the billiard flow in the following theorem.

Theorem 3.1.3. Let g be a potential satisfying the assumptions from Theorem 3.1.2,
and let jig = (deug)_lug ® X. Then pg is a ¢i-invariant Borel probability measure
that is an equilibrium states for any potential g such that g = \(g) — P(¢1,§)T, where
Ag)(x) = fOT(m) G(¢¢(x)) dt. Furthermore, fig is flow adapted and (¢, jig) is Bernoulli.

In a work in preparation with Baladi and Demers [BCD22], we bootstrap from the
results of the present paper to show that if hiop(P1)Tmin > solog2 then the potential
—htop(¢1)T satisfies the sufficient assumptions SSP.1 and SSP.2 in our Theorem 3.1.2, thus
constructing a measure of maximal entropy for the billiard flow. This is done by studying
the family of potentials —¢7 and proving that the maximal value ¢, of ¢ such that —t'7 has
SSP.1 and SSP.2 for all 0 < ' < t, satisfies too > htop(¢1). Indeed, recalling Remark 3.3.9
and Corollary 3.2.6, for every small enough |t|, —¢t7 has SSP.1 and SSP.2, and the case
t = htop(¢1) corresponds to measures of maximal entropy for the billiard flow.

3.2 Topological Pressure, Variational Principle and Abramov
Formula

In this section, we formulate definitions of topological pressure for the billiard map, and
prove that — under some conditions — they are equivalent. Using a classical estimate, we
then prove one direction of the variational principle. Finally, making use of the Abramov
formula, we relate equilibrium states of T" with the ones of the billiard flow. More specifically,
we identified the potential for 1" which is related to — up to existence — the measures of
maximal entropy of ¢;.

We first introduce notation: Adopting the standard coordinates = = (r, p) on each
connected component M; of

D
M = 0Q x {—gﬂ = [JoB: x [—” ”],
where r denotes arclength along 9B;, ¢ is the angle the post-collisional trajectory makes
with the normal to dB; and M; = 9B; x [—%,%]. In these coordinates, the collision map
T : M — M preserve a smooth invariant probability measure pgrp given by duggs =
(210Q])~! cos ¢ drdep.
We now define the sets where T" and its iterates are discontinuous. Let Sp :== {(r, ¢) €
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M | |p| = 7/2} denote the set of grazing collisions. For each nonzero n € N, let

n
Sin = |J TS,
i=0

denote the singularity set for 7", It would be natural to study the map T restricted to
the invariant set M \ UpczS, where T is continuous, however the set of curves U,czS,, is
dense in M [CMO06, Lemma 4.55]. We thus introduce the classical family of partitions of
M as follows.

For k,n > 0, let M", denote the partition of M \ (S_;US,,) into its maximal connected
components. Note that all elements of M™, are open sets on which T" is continuous, for
all =k < i < n. Since the thermodynamic sums over elements of M{} of a potential g will
play a key role in the estimates on the norms of the iterates of the transfer operator £, in
Section 3.5, it should be natural — by analogy to the case of continuous maps — to define
the topological pressure from these sums.

Another natural family of partitions is given as follows. Let P denote the partition of
M into maximal connected components on which both 7" and 7! are continuous. Define
P = Vie_s T-P and remark that T* is continuous on every element of P”,, for all
-k <1< n.

The interior of each element of P corresponds to precisely one element of M! |, but
its refinements P", may also contain some isolated points — this happens if three or more
scatterers have a common grazing collision. These partitions already appeared in the work
of Baladi and Demers, where they proved [BD20, Lemma 3.2] that the number of isolated
points in P"; grows linearly in n + k.

Finally, denote P .. the collection of interior of elements of P",. In [BD20, Lemma 3.3],
Baladi and Demers proved that P k= MY_LJIQL, for all n, k > 0. It should be natural that
the topological pressures obtained from these three families of partitions coincide. This is
the content of Theorem 3.2.1.

In order to formulate the result on the equivalence between definitions of topological
pressure for T', we need to be more specific about the definition of piecewise Holder.

We say that a function g is (M}, a)-Hélder, 0 < a < 1, if g is a-Hélder continuous on
each element of the partition MJ. We define the C® norm |g|ca of g to be the maximum,
over all connected components U of the domain of continuity of g, of the usual C* norm
‘g‘ca(U), that is

|9lce = max{|g|cowy + Hij(g) | U connected set on which g is continuous},

where 9(a) ~ 90|
g\x)—g\y
Hi(g) = sup ————24.
U( ) z,yelU d(:r;,y)"‘
Similarly, we say that a function g is Mj-continuous if g is bounded and continuous on
each element of the partition MJ. We define the C° norm |g|co to be the maximum over
all connected components U of the domain of continuity of g, of the usual CY norm, that is

|9lco = max{|g|coy | U connected set on which g is continuous}.
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Theorem 3.2.1. Let g: M — R be a potential bounded from above. Then

1
lim =1 g (Sng)(x) —. p (T
S loE 2 s (9
SV

exists and is called the pressure of g. Moreover, the map g — Pi(T,g) is convex.
When g is M{-continuous and P(T,g) —sup g > 0, the following limits exist and are
equal to P.(T,g).

i) lim 1 log > sup e(sng)(x)7
() n——+oo ™ AE756L zEA

%) lim Llog 3 supel®n9)@)
(i)l AEMP z€A
Furthermore, when g is also (M}, o)-Hélder continuous, then the following limits are
equal to P.(T,g).

i) lim L1 inf e(Sn9)(x)
() lim Flog 32 it el

; lim 11 inf e(Sn9)(@)
) Jm wlos 2 jnf 0,

i 1 i (Sng)(z)
(v) nEIvILloo n log Aez/\:/tg :21612 ¢ ’

Finally, the sequence n— log > sup eSn-19(2) 4s subadditive.

AeMp zeA
Proposition 3.2.2. Let g be a M}-continuous potential. Let Pspan(T, g) and Psep(T, g)
be the pressure obtained using Bowen’s definition with, respectively, spanning sets and
separating sets. Then Pupan (T, g) < Pi(T,g) and Pep(T, g9) < Pi(T,g). When P(T,g) —
supg > 0, then P.(T,g) = Pep(T,g). Furthermore, when Py(T,g) —supg > 0 and g is
(M, «)-Hélder, Pu(T, g) = Pspan(T, 9).

The proof of the last three forms of P.(7, g) in Theorem 3.2.1 relies crucially on the
following lemma.

Lemma 3.2.3. For every (M}, a)-Hélder continuous potential g there exists a constant
Cy such that for alln > 1 and all P € Py,

sup 9 < Cyinf eon9.
P P

The estimate still holds, for the same constant Cy, when Py is replaced by P";, ﬁfl or
M™,, for any fized | > 0.

Before the proofs of these results, we first recall that T is uniformly hyperbolic in the
sense [CMO06] that the cones

CY = {(d?’, d(p) S ]R2 | Kmin < dtp/dr < Kmax T+ 1/Tmin}7

2 (3.2.1)
C* = {(dr,dp) € R* | —kmin = dp/dr > —FKmax — 1/Tmin},

are strictly invariant under DT and DT ', respectively, whenever these derivatives exist.
Here kmax is the maximum curvature of the scatterer boundaries, ki, the minimum, and
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Tmin 18 the minimum of the return time function 7. Further more, there exists C7 > 0 such
that for all n > 1,

[ DT (v)|| = C1A|[v]], Vv € €%, [[D T (v)|| = C1A"[|v]], Vv € C*,
where A = 1 4 2KminTmin is the minimum hyperbolicity constant.

Proof of Lemma 3.2.3. Let d,, denote the Bowen distance, that is the dynamical distance
given by
_ i, i
dn(z,y) = Moax. d(T"z, T"y),
where d(z,y) is the Euclidean metric on each M;, with d(z,y) = 10D max; diam(M;) if =
and y belong to different M; (this definition ensure we have a compact set). Let €9 > 0 be
as in [BD20, eq (3.3)], that is: if d,,(x,y) < €0 then x and y lie in the same element of M.
Therefore, by the uniform hyperbolicity of T, if d(T%(x),T%(y)) < €0/2 for all |i| < n then
d(z,y) < C1A"eg/2.
For all integer m and all potential g, define its variation by

Var, (g, T, ) = sup{|g(z) — g(y)| | d(T7z, T7y) < e, |j| < m}.

When g is (M}, a)-Hélder, we get that Var,,(g, T, 28-) < C(FA™™)?. Therefore

Z Var,, (g, T, %) = K < .

m=0

By uniform hyperbolicity of T', there exists k. such that diam(./\/lfz:) < g0/2C4 for all
n > ke. It then follows from the proof of [BD20, Lemma 3.5] that if  and y lie in the same
element of Pff,;r”, then d,(z,y) < g9/2C1, for all n > 0.

Let P € Pfsl;r" and let z, y € P. Let 0 < k < n. Then for all |j| < my = min(k,n— k),
d(TH(T*x), TI(T*y)) < €9/2C; and so |g(T*x) — g(T*y)| < Vary,, (9,7, 3¢-)- Therefore

[5]+1
€0
_ < —) < .
|Sng(x) — Shg(y)| < 2 mEZO Var, (g, T, 201) <2K < 0

Now, let P € Py for some n > 2k.. Notice that Pg = V?:—kk; T"'Pfekg, in other words
for all [ such that k. <1 < n — k., T'P is included in an element of Pfsks. Finally, by
decomposing each orbit into three parts, we get that for all z, y € P,

eSn9(@)=Sng(y) _ oSk 9(2)=Sk.9(y) oSn—2k 9(T* 2) =S 2. 9(T*y) Sk (T e ) = Sp g(T™ " Foy)

< erE(sup g—inf g) €2K.

The claim holds for n > 2k, by taking the sup over z and the inf over y in P. Since there
are only finitely many values of n to correct for, by taking a larger constant, the claimed
estimate holds for all n > 1.

Fix some [ > 0. Since an element P € P"; is contained in a unique element Pc Py,
we get that

sup eSnd < sup eSnd < C inf eSnd < CiIFl)f eSnd.
5 P

P P
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Now, assume that P # (). Then, by the continuity of S,g on P, the estimate also holds
when the sup and the inf are taken over P. In other words, the claim is true for all P € Pl"

Since by [BD20, Lemma 3.3], 75?[ = MT[_ll, the claim is true for all P € M",, for
fixed I > 1. We finish the proof with the case P € M{. Remark that letting A € M",,
then T7'A € M{™!. Therefore

e *"P9 sup eSnt19 L sup eSn+19-9 — sup 59 < Clinf %9 = O inf e“n+1979
T-14 T-14 A A T-1A
< 20e ™9 inf Sn+19,
T-14
Only in this last case, we need to replace C' by 2Ces9-nfg > . U

Proof of Theorem 3.2.1. Let p, = 3. supe(®n9@) Then, for k > n,
AeP] z€A

Pk = Z sup eSn9)@FTENT"0) <0y 0y

Bncepy \/ T—npk TEBNC

Therefore (logpy), is a sub-additive sequence. It is then classical that %log Py, converges
to 1r;f1 % log pp, hence P, (T, g) exists. We now prove the statement about convexity. Let g;
nz

and go be two potentials bounded from above and p € [0, 1]. Using the Holder inequality,
we get that for all n > 1

p 1-p
Z Supep5n91+(1—p)5ngz < Z sup (eSngl) (supeS"g2)
A

Aepp A Aepp A
p 1-p
< ( 3 Supesnm> ( 3 Supesn%>
Aepy 4 Aepy 4

Taking the appropriate limits, we get that P.(T,pg1 + (1 — p)g2) < pPu(T,g1) + (1 —
p)P«(T, g2), hence the claimed convexity.

For (i), consider p, = Y. supe®9®  Notice that
Aepy z€A

PP={AecPl|A£0U{AecPy|A=0}

Now, Baladi and Demers proved in [BD20, Lemma 3.2] that the cardinality of the second
term in the right hand side grows at most linearly. Hence

sup e(Sn9)(@) < CnesUPY,
Aepp v€A
A=p

By the smoothness of g,
Z sup e(sng)(m) — Z sup e(Sng)(r).

Aepg v€4 aepy *A
A#0

Thanks to the assumption P, (T, g) —sup g > 0, the sum over elements A € Py with A # )
dominates the sum over A with A = (. Thus (% log pp)n converges to the same limit as

(Llogpn)y does.
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For (ii), we use [BD20, Lemma 3.3] that P§ = M"™TL. Hence

sup e(Sn+19)(2) < Z sup e(Sn+19)(2) < Z sup e(Sng)(x) sup e9(@)

AEMS+1 €A AEMT{I €A AG’IE'(’)L €A xeM

Furthermore, since M"T! = M+t \/ MO, each element of MJ™! contains at most #M°,

elements of M™!. Hence

1 z€EA #M?O zEA zeM

AeMit 1 aepn

Point (iii) (resp. (iv), (v)) follows directly from the definition of P.(T, g) (resp. from
point (), (i7)) and from Lemma 3.2.3 since

inf e°"9 < sup e*"9 < C'inf €9,
A A A

for all A in P§ (resp. 75{{, MG). For the final claim, we prove that log > sup eSn9 ig
pepyp P
subadditive. Take P a nonempty element of P{Hm It is the interior of an intersection of
elements of the form T_jAj for some A; € P, for j =1,...,n+ m. This is equal to the
intersection of the interiors of 777 A;. But since P is nonempty, none of the T/ A; has
empty interior, and so none of the A; has empty interior. Thus the interiors of A; are
in P. Now, splitting the intersection of the first n sets from the last m, we see that the
intersection of the first n sets forms an element of 73? For the last m sets, we can factor

out T~™ at the price of making the set slightly bigger:
(7" I A, ) C T (t(T(A,—y), 1<j<m
where int denotes the interior of a set. Thus

n m
S osupefmt < Y sup{e It (2) o€ (\TIA AT ()T AL )

o P o . .
pepyt™ A_jeP j=1 j=1
1<j<n+m

< Z sup{e®9(z) | x € ﬂ T9A_} Z sup{e®m9(z) | z € ﬂ T9A_;}

A_jep J=1 A_jeP J=1
1<G<n 1<g<sm

< Z sup 9 Z sup e°m9
o P o P
Pepy Pepp

Taking logs, the sequence is subadditive. And then so is the sequence with M in place of
Pt O

Proof of Proposition 3.2.2. We first prove the claim about separating sets. Let € > 0 and
let k. be large enough so that diams(/\/l(iks_l) < OA % < ¢qe for some constant ¢ to be
defined later. Therefore diam“(/\/l'_”,ggl_l) < OA % < ¢qe for all n > k.. By the uniform
transversality between the stable and the unstable cones, we can choose c; such that
diam(M™1! ) < e for all n > k..

Let E be (n, ¢)-separated, for some n > k.. It is shown in the proof of [BD20, Lemma 3.4]
that if x,y € F are distinct, then they cannot be contained in the same element of Pfa,;r"
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Thus
Sng(z S, _ SpgoT ke
ST <N e oy = D [ lco(a)
z€E Aephetn Aepghetr
ke (sup g—2inf S n
< ek=(upy 9) Z | €52k 19| o 4.
Agphetn

Therefore

.1 Spg(z .
Jim - log sup{g:Ee 9@) | E is (n,e)-separated} < Po(T,g) , for all € > 0.
Taking the limit € — 0, we get Piep (T, 9) < Pu(T, g).

For the reverse inequality, assume that ¢ is such that P, (T, g) —supg > 0. From the
proof of [BD20, Lemma 3.4], there exists €y > 0 such that for all € < &g, any set E which
contains only one point per element of M is (n,e)-separated. For all A € Mg, there exist
& € A such that e%9(®) > 1% sup 4 €979, Let E be the collection of such x. Thus

9
Sn T Sn
5:6 g()>*10 E, €79 o) -
©€E AeMpy

Therefore,

1
Jim - log SUP{:EEZE e59() | B is (n,e)-separated} > P,(T,g), forall 0 <e < .
Taking the limit € — 0, we get Peep(T, g) = Pi(T, g), thus the claimed equality.
We now prove the claim concerning spanning sets. Let € > 0 and let k. be such that
diam(MT};:_l) < ¢ for all n > k.. Let F' be a set containing one point in each element of
Pf;gsl. From the proof of [BD20, Lemma 3.5], F' is (n,¢)-spanning. Since

Z eSn9(x) < ke (sup g—2inf g) Z |852k5+n9|co(A)
z€eF AE'ngr:—O—n

we get that

R Sng(z . .
Jim - log 1nf{3§?e 9@) | F is (n,e)-spanning} < Py(T,g), foralle >0.
Taking the limit € — 0, we get Pepan(T, 9) < Pi(T, g).
For the reverse inequality, assume that g is a (M}, a)-Holder potential such that
P.(T,g) —supg > 0. Let ¢ < gy and let F' be a (n,e)-spanning set. By the proof
of [BD20, Lemma 3.5], each element of M{ contains at least one element of F'. Thus

Z eSn9(®) > Z ir,ale eSnd

zelF AeMy

Taking the appropriate limits, we get that Pepan(T, g) = P(T, g), thus the claimed equality.
U
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3.2.1 Easy Direction of the Variational Principle for the Pressure

Recall that given a T-invariant probability measure y and a finite measurable partition .4
of M, the entropy of A with respect to p is defined by H,(A) = — > 4c 4 n(A)log u(A),
and the entropy of T with respect to A is h, (T, A) = lim; 00 %Hu (\/?:_01 T*i.A).

Lemma 3.2.4. Let ¢ : M — R be a measurable function. Then
P.(T,p) = P(T, ) =sup{h,(T) + /(pd,u | i is a T-invariant Borel probability measure}

Proof. Let u be a T-invariant probability measure on M. Notice that P is a generator for T’
since V52 _ . TP separates points in M. Thus h,(T) = h, (T, P) (see for example [Wal82,

Theorem 4.17]). Then,

hy(T) +/<pdu:nlim L > (—M(A) logu(A)Jr/ASnwdu>

APl
o1
< Jim = >0 #(A)(sup(Snp) — log u(4))
AePy
.1 Sn
< nlgroloﬁlog > sup e A VING)
AePy
where we used [Wal82, Lemma 9.9] for the second inequality. O

3.2.2 Abramov Formula and Choice of the Potential g

In order to obtain the existence of MME for the billiard flow, we make use of the Abramov
formula to relate equilibrium measure for 7" and some potential g, to the MME of the flow.
First, we need the following lemma.

Lemma 3.2.5. Let ¢ be a bounded non-negative measurable function such that pg =
inf{ [ pdp | Tup = p} > 0. Then, there exists a unique real number c, such that
P(T, —cyp) = 0.

Proof. We first prove that the function ¢t — P(T,ty) is increasing. Let ¢ > 0 and ¢ < to.
There exists a T-invariant probability measure p; such that

P(T,t1p) < hy (T) + 11 /gpdul +e < P(T,tap) — (t2 — t1)po + €.

By this computation, we also get that tl}gloo P(T,tp) = o0 .

Now we prove that ¢t — P(T,ty) is continuous. Let ¢ > 0 and ¢t € R. By the
previous computation, we get that epg < P(T, (t + ¢)¢) — P(T, tp). Let po be such that
P(T,(t+e)p) < hu(T) + (t+¢) [ odus +e. Thus

P(T, (t+¢)p) — P(T,tp) < e(l +supp).

Therefore t — P(T,ty) is strictly increasing and continuous, so it must vanish at exactly
one point, noted —c,. O

We can now use this lemma with the Abramov formula to get the following



3.3. Growth Lemma and Fragmentation Lemmas 49

Corollary 3.2.6. Equilibrium measures of T under the potential —hiop(Pp1)T and MME
of the billiard flow (seen as a suspension flow) are in one-to-one correspondence through
1

the bijection p+— p, == ank® A, where X\ is the Lebesque measure.

Proof. Since 7 > Tmin > 0, the assumption of Lemma 3.2.5 is satisfied for ¢ = 7. Let ¢ be
the constant given by Lemma 3.2.5 such that 0 = P(T, —c7). Then, for every equilibrium
state m of T" under the potential —c7, we get

0=hn(T) —C/Tdm > h,(T) —C/Tdu,
for all T-invariant measure u. Thus

halT) (D)
[rdm = [rdu’

Now, by the Abramov formula, ¢ = hy, (¢1) = hy,(¢1). In other words, m, is a MME
for the billiard flow. Furthermore, since ¢; is a continuous map of a compact metric
space, by [Wal82, Theorem 8.6], we get that hiop(¢1) = sup{hu(é1) | (#1)«p = p}. Thus

Cc= htop(¢1)-

To prove that the function is onto, we use that any ¢,;-invariant probability measure p-
must be of the form ﬁu ® A, for some T-invariant probability measure p. Thus, reversing
the above computations, we get that if p, is a MME, then g is an equilibrium state for T

under the potential —hop(¢1)7. a

Therefore, proving the existence and uniqueness of a MME for the billiard flow is
equivalent to proving the existence and uniqueness of equilibrium states of 1" under the
potential g = —h¢op(¢1)7. Notice that in the second case, g is (M, 3)-Holder continuous
and the condition Py (7T, g)—sup g > 0 from Theorem 3.2.1 is realised since P, (T, g)—sup g >
P(T7 _htop(¢1)7—) + htop(¢1)7min > 0.

Remark 3.2.7. Using similar arguments as in Corollary 3.2.6, we can relate the equilibrium
states of ¢, under g : 2 — R to the ones of T under g = A(§) — P(¢1,9)7, where
Ag) : M — R is given by

7(x)
@) (@) = /0 3(6u(x)) dt.

3.3 Growth Lemma and Fragmentation Lemmas

This section contains growth lemmas, controlling the growth in complexity of the iterates of
a stable curve, with a weight g. We also formulate the precise definitions of the conditions
SSP.1 and SSP.2. The first condition will be used to prove the “Lasota—Yorke" bounds on the
transfer operator £, in Proposition 3.5.1, as well as the lower bound on the spectral radius
in Theorem 3.5.3, while SSP.2 will be crucial for the absolute continuity (Corollary 3.6.8)
used to prove statistical properties (Propositions 3.6.12 and 3.6.15 and to compute the
pressure (Corollary 3.6.14).

In view of deriving Lemma 3.3.3 from Lemma 3.3.2, we must work with a class of curves
more general than stable manifolds. Recall the stable and unstable cones (3.2.1).

We define a set of cone-stable curves? W* whose tangent vectors all lie in the stable
cone C*® for the map, with length at most dy (to be determined latter) and curvature

2. The notation W?* will be used for the stable manifolds. See Subsection 3.4.2.
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bounded above so that T-1W* C W* , up to subdivision of curves. We define a set of
cone-unstable curves W* similarly. These sets of curves will be relevant since S, and S_y
are composed of curves in W* and W", respectively.

For § € (0,00 and W € W*, let GO(W) == {W}. For n > 1, define the §-scaled
subdivision G (W) inductively as the collection of smooth components of T~(TW') for
W' € G (W), where elements longer than § are subdivided to have length between §/2
and 6. Thus G2 (W) C W* for cach n and UvegswyU = T7"W. Moreover, if W € W?,
then G (W) Cc W*.

Denote by LS (W) those elements of G (W) having length at least §/3, and define
T%(W) to comprise those elements U € G (W) for which T'U is contained in an element
of GO (W)~ LS (W) forall0<i<n—1.

A fundamental fact [Che01, Lemma 5.2] we will use is that the growth in complexity
for the billiard is at most linear:

34 K > 0 such that V n > 0, the number of curves in Sy, that intersect

(3.3.1)
at a single point is at most Kn.

3.3.1 Growth Lemma

Lemma 3.3.1. For any m € N, there exists 69 = do(m) € (0,1) such that for all W € Ws,
if [W| < 6o, then for all 0 < 1 < 2m, T~'W comprises at most Km + 1 connected
components.

Furthermore, for any § € (0,0], the d-scaled subdivisions satisfy the following estimates:
foralln>1, ally € [0,00), allW € )7\/\3, and all M{-continuous potential g, we have

¥
log |W;| !
WieT8 (W

1 i
b) Z (10g x‘ ) ’esng|CO(Wi) < min{205—12((n\/n0)50+1)7 Z |€SHQ|CU(A) ,
Wega (W) N 08 Wil AeMy

n
927+l 151 Z 200V10)80Y (K  1)7/med sup9 Z \eS"*jQICO(A)
j=1 AempI

where (n V ng) = max(n,ng).
Moreover, if |W| > 8/2, then both factors 20D can be replaced by 27.

Proof. By [CMO06, Exercise 4.50], there exist constants dcyr > 0 and C' > 1 such that
for all W € W* with |W| < 5CM, then |T-'W| < C|W|/2. Notice also that there exists
A1 = A1(po) such that for W € W* with T'W N {|p| > ¢o} = 0, then |T1W| < A|W]|.
We want to iterate these bounds.

Let 0 € (0,5cm], W € W with |[W| < 4, and W; € Z3(W). Let V. C W corresponding

to Wi, that is V. = T"W,. Thus, for all 1 < j < n, we have |[T7V| = |T"TW;| < /3.
We can decompose V' = |€| it graZU |_| JO exp Such that: for all ig € Ip, T IVZg graz C
w€lo
{|S0‘ 900} and thus ’T 1‘/12 graz’ C’ 0 graz’l/Qv and for all jO € ‘]07 ‘/]0 exp - {|§0‘ <
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1 0 o .
w%}, and théls TP ol < Mi|VD L. We can perform the same decomposition for
Vi araz O Vg exp instead of V:
Lyio 1,i0 L,jo »Jo
ZO graz |_| ‘/’Ll ,graz |_| le exp ? ]O,QXP |_| .‘/’Ll ,graz |_| le,exp

We can iterate this decomposition until having a decomposition of T~V = W,. Notice
that since the stable curves TV have length at most 6/3 < dcum/3 and are uniformly
transverse to Sp, they can cross {|p| = o} at most B times, where B > 0 is a constant
uniform in W. Thus the number of pieces at each decomposition is bounded by 2B.

Thus W; =T "V = L V&%=t where the union is made of at most (2B)"
x€{graz,exp}
ap el Uy

elements we can estimate the length.
nog—1
Consider first the case n < ng. By definition, sg is such that sy = sup n% > Lg>p0)©
M k=0
TF < 1. Thus, for each Vo % "*"~! there are at most song indices ay € Iy. Thus
[Vau o2 9n=t < C2AT V277", Therefore

(Wil = |T7™V| < (2B)™C2A™ |V > < CIW ™" YW, € Z2(W), n < ng, § < dom
(3.3.2)

Now, consider the case n = kng +{, for £k > 1 and 0 < I < nyg. By construction, if
Wi € Z3(W), then T-'W; € WP € Z9, (W) and T~ W/ C WJ+1 €LY 1y, (W) for all
0 < j < k—1. Thus, we can iterate (3.3.2):

‘Wz’ < Cf’WiOP*sono < éZiLZOQ—msono‘Wij‘gfjsono Cz‘WP (k+1)sgmo

and so |W;| < C?[W |2 for all W; € Z3 (W), n > ng and all W € W with [W] < dcr.
Therefore, if § < min(C~2,dcyp), we have

log\Wﬂ)” log C? v .
< (201 - < 20t )Y W, e IO(W
(log\W\ log |W;] ’ €L,(W),

since |W;| < 6.

(a) Let m>1and W € W with [W| < 6 <min(C~2,dcym). First, we want to estimate
the number of smooth components of T—!W, for 0 < I < 2m. The problem is the same as
knowing the number of connected components of W \. S_;. Now, by (4.2.2), at most Kl
curves in S_; can intersect at a given point. Since W and S_; are uniformly transverse, for
each 0 < 1 < 2m there exists J(;) such that if |W| < () then W\ §_; has at most K1+ 1
connected components. Let g := mln{5 |0 <1< 2m}.

Let n > 1, 0 € (0,0p] and W € W Wlth |W| < 8. We want to estimate #Z°(W). We
prove by induction that #Z m( ) < (Km+1)/. For j = 1, this follows from the choice of

dp. Since elements of I( (W) are of the form V € T2 (W;) for W; € I?m(W), we have

i+ 1)m
HI? (W) < (Km 4+ DHI, (W) < (Km + 1)
Now for estimating # jm—l—l(W) < I < m, we only need to modify the last step:

#L (W) < (K (m 4+ 1) + DFL (W) < 2(Km +1)7.
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Therefore, #Z3 (W) < 2(Km + 1)™™ for all n > 1.
Finally, we have that for n > ng

N
Z <110g ‘::;\) ‘esng|CO(Wi) < ensupg2(nso+1)q7#zz(w) < 2(nso+1)7+1(Km + 1)n/m€nsupg
og |Wi

W,eZS (W)

(b) Let 6 < dp, and W € WS with [W| < 6. We start by giving an estimate on

> |eSne lco(w;,)- Since the border of elements of M"Y is contained in S_;, by uniform
WieGs (W)
transversality, each element of MY is crossed at most one time by W. Thus, each element
of M is crossed at most one time by T~"W. Now, since the diameter of elements of M{}
is bounded uniformly in n by some constant C, there can be no more than 2C5~! elements

of GS(W) in a single element of M. Thus

S e oy <2057 DT € coga (3.3.3)
WieGs (W) AeMp

First, in the case |W| > 0/2, the estimate

lOg‘W| 7 — nVvng)s Y
2 <log\w.|> %9 lcoqw,) < 2087 12(VMIOTDT B 7 (e o ),
WG4 (W) ! AeMy

is enough for what we need.

Now, assume that [WW| < 6/2. Let Fy(W) denote those V € G¢(W) whose length is at
least §/2. Inductively, define F;(W), for 2 < j < n—1, to contain those V' € Q?(W) whose
length is at least §/2, and such that T*V is contained in an element of g?_k(W) NEj_p (W)
for any 1 < k < j — 1. Thus Fj(IV) contains elements of gf(W) that are “long for the first
time” at time j.

We group W; € gg(W) by its “first long ancestor” as follows. We say W; has first long
ancestor> V € Fj(W) for1<j<<n—-1if T 3W; C V. Note that such a j and V are
unique for each W; if they exist. If no such j and V exist, then W; has been forever short
and so must belong to ZJ(W). Denote by A,,—;(V) the set of W; € GJ(W) corresponding
to one V € F;(W), that is

Ay (V)= {W; € GS(W) | T"IW; C V).

By construction, we have the relation

n—1
Go(W) ~ (|_| | | An_j<V>) =TI)(W).

j:l VGFJ‘ (W)

3. Note that “ancestor” refers to the backwards dynamics mapping W to W;.
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Therefore

log [W[\" s,
> (iagiw) ey

WG (W

- 1ogywy)” s log [W[\7, g

z > ¥ | oy + 3 (ogy) 1€ ey
EF; (W) Wi€A,_; (Vi) log [Wi] WiE€Zn( log [Wi]

1og|W|)7 5 log [VI| " s,._,

S Sy ¥ () 5oy

= (W)<10g|Vz| D e ooy \iog W]
((nVng)so+1)fy(Km_’_ 1)n/m6nsupg

~y+1 —1 sy log’W’ K Sig Sng
<2tesTt Yy ) og [Vi €% coqy Do €7 coay
J=1 vier;(w) N 08 1V :

Hl—\

3 Q

+ 2((nVno)so+1)’Y(Km 4 1)n/mensupg

n
<29+t Z 2(3Vn0)30Y (K, 4- 1)7/M el UP9 Z |eS”9|CO(A)
J=1 AeMyI
where we have applied part (a) from time 1 to time j and the first estimate in part (b)
from time j to time n, since each |Vy| > §/2. O

3.3.2 Fragmentation Lemmas

Here, given a potential g, we introduce the conditions of Small Singular Pressure (SSP.1 and
SSP.2) which are crucial for the existence and the statistical properties of the equilibrium
states p, that will be constructed in Section 3.6. We prove in Lemma 3.3.2, Corollary 3.3.4
and Lemma 3.3.3 that there exist potentials satisfying simultaneously the conditions SSP.1
and SSP.2. These conditions and their consequences will be used in Section 3.3.3.

In what follows, we will always assume that the potential g is such that P, (T, g)—sup g >
splog 2. Thus, there exist m large enough such that

1
—log(Km+1) < P.(T,g) —sup g — sglog 2,
m

and we choose dy = dp(m) to be the corresponding length scale from Lemma 3.3.1. Notice
that m, and therefore also &g, depend on g.

In order to state the results of this subsection, we give a precise definition of SSP.1.
First, we introduce some notations.

Let L2 (M?,,) denote the elements of M°, whose unstable diameter * is at least §/3, for
some & € (0,dp]. Similarly, let LJ(ME) denote the elements of M whose stable diameter
is at least 0/3. Recall that the boundary of the partition formed by MY is comprised of
stable curves belonging to S, = Uj_oT —3i(8y) C W*.

Define
6(g,0) =mf{ > [e¥coqy | W WS, § < W] <6},
VeLs (W)
—1 o~
Ci(g,0) =inf{ > [e% ooy | W e W™, § < W] <6},
VeLs (W)

4. Recall that the unstable diameter of a set is the length of the longest unstable curve contained in
that set.
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where in the second line LS (W), W & V/V“, is defined similarly as in the case W € W\S, but
replacing T~! by T in the definitions, and S, 1g:=3>" g0 T ¢ = S,go T ".

A potential g such that P(T,g) —sup g > splog?2 is said to have e-SSP.1 (small singular
pressure), for some € > 0, if

there exist § = d(¢) € (0, 0] and n; € N such that (3.3.4)
2 €279 cow, .

men® __ > "% Wn> o YW e WS with W] > 48/3 |
> lePIcogwy T 1-¢€

WieGh (W)

the sequences (™59 ¢5(g,6) ) psn, and (€59 1%(g,8) 1) >, are summable,
(3.3.5)

and the time reversa of (3.3.4) holds. More precisely, we call time reversal of (3.3.4) the

same estimate but replacing S,g and W € W$ with S lg=5" goT Pand W € we.

Notice that (3.3.4) (resp. its time reversal) implies that £;(g,d) (resp. £¥(g,d)) is nonzero
for all n > n;.

A potential is said to have SSP.1 if it has e-SSP.1 for some € < 1/4.

The following lemma bootstraps from Lemma 3.3.1 and will be crucial to get the lower
bound on the spectral radius:

Lemma 3.3.2. If g is a (M}, a)-Hdlder potential such that P(T,g) —supg > so and
log A > sup g — inf g, then g satisfies (3.3.4), as well as its time reversal, for all € > 0.

Proof. Fix e > 0. Choose ny so large that GCC’flnl(Knl+1)e”1(supg_infg_1°g/\) < €, where

C' is the constant from Lemma 3.2.3 and C} is such that |T7"W| > C1A"|W| whenever

W € Ws. Next, choose § > 0 sufficiently small that if W € W* with |W| < 0, then T7"W
comprises at most Kn + 1 smooth pieces of length at most dy for all 0 < n < 2n;.

Let W € W* with |W| > §/3. We shall prove the following equivalent inequality for

n=mni:

> e cowy

W; e85 (W) €

< )
> e co,y  1—e
W;eG8 (W)

(3.3.6)

For n > ni, write n = kny + [ for some 0 < | < ny. If kK = 1, the above inequality is
clear since Sgl (W) contains at most K (n1 + 1) + 1 components by assumption on § and
ny, while [T~ 1W| > CyAMH W] > C1A™+§/3. Thus G2 (W) must contain at least
CyA™*1/3 curves since each has length at most 6. Thus,

> €S com

W88 (W) K(ny +1) +1elmthsupg —1 (sup g—inf g—log A
> 59 coawy <9 CiAm+l g(mi+D)infg <607 (Kny1)em (upomintomionl) <
W;eGl (W) '

where the last inequality holds by choice of n;.

For k > 1, we split n = kn1 + 1, 0 <1 < nq, into k — 1 blocks of length n; and the last
block of length ny + 1. For each V € G3(W) \ Z3(W), let j < n be the greatest integer
such that 7"V is contained in an element V, of L?(W) and for all j <i <n, T"7*V is
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contained in an element of Sf(W). We call V,, the most recent long ancestor of V and j
its age. If such a j does not exists, it means that for all i < n, T"*V is short, that is
V € Z3(W) and we set j = 0 in this case.

We group elements of S% (W) by their age in [0,n1 — 1], [n1,2n1 —1],..., [(k—2)n1, (k—
1)n; — 1] and [(k — 1)ni,n — 1]. In other words, we consider the following decomposition

5 k—2 [ (g+1)ni—1 5 n—1 S
Sa(W) =] | ] ] z,,;,(v)|u | | L] Zo,0n)|. (337
=0\ Jj=qm  VeLy(W) j=(k=1)n1 VeLy (W)

We can therefore split the left hand side of (3.3.6) into two manageable parts. For this, we
rely on Lemma 3.3.1 for v = 0 and the fact that

Gw)> || ¢_v), vo<j<n
VELY(W)
Thus, using Lemma 3.2.3, we have

k—2 (¢+1)n1—1

, > X AeMleowy L e = 1€ oowy X e coqw,
9=0  j=qn1  VeL}(W)W;eI]_,(V) _ 2T T versw) WLl (V)
> 59| o) h qz:;) Lo Oy ooy X elnmd)infy
wiegy, (W) ! VeLS(W) Wiegd (V)
1 J n—j
k—2
< Z 6001—1711(}-(”1 + 1)que(k7q)n1(supgfinfgflogA)
q=0
k—2 k
< Z gk—a — Z 4
q=0 q=2
Similarly, for the second part we have
= s S; Sn;
> > > e cowy > e oy X2 e oy
j=(k=1)m VELI(W) WieZ)_,(V) _ o versw) Wiezd_ (V)
> 579 | o) - -_(,;) Ct Y [e%9poy X elnmd)intg
WiEd), (W) 7= " VeL} (W) WieGd_ (V)

< GCC’flnl (Kny + 1)6”1(Supg—infg—logA) <e

Summing these two estimates, we obtain (3.3.6).

The time reversal is obtained from the same proof by changing the construction of the
set GO (W) (and thus LS (W), S3(W) and Z2(W)) so that elements of G (W) are contained
in T"W (instead of T-™(W)) for W € W, O

Notice that if ¢ < 1/4 and 6; < Jp and n; are the corresponding § and n; from the
e-SSP.1 condition, then we have for all W € W?* with |W| > 6;/3 and n > ny

2
> fes"g\CO(Wi)>§ > 1€ o (3.3.8)

WieLH (W) WieGnt (W)
In particular, since G& (W) = L (W) LI S3 (W), we also get that
> ooy =2 3 (e oo, -
Wi€LH (W) WiESH (W)

The following lemma will be used to get both lower and upper bounds on the spectral
radius via Proposition 3.3.5:
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Lemma 3.3.3. Let g be a (M}, a)-Hélder potential such that P.(T,g) — sup g > solog 2
and which has SSP.1. Let 01 and ny be the corresponding parameters associated with SSP.1.
Then there exist Cy, > 0 and na = ny such that for all n > na,

1 —1
S e ooay = Crdt > 1€ I oogay,

AEL}(MO) AeM2,
> 1oy = Crbt D> €7 0oy
AELgl (Mg) AEMG

Furthermore, if g is a (M}, a)-Hélder potential with P.(T,g) — supg > solog2 and
log A > supg — inf g, then g has SSP.1.

Proof. We prove the lower bound for L%'(MZ). The lower bound for L3(M?,)) then
follows by time reversal.
First, we need to define sets that will be relevant only here. Let

I (MG) = {A e M | diam®(A4) < 61/3}
be the complement of LI (MP) in Mg, and
I,(T778y) := {unstable curves in T77(Sy) with length less than &;/3}

Define also Ls(T7Sp) as the complement of I;(T~7Sp) in g?l (So)-

We will deduce the claim by estimating the sum of norms of €79 over I, s(M§) by the one
over Lo (MP). To do so, we estimate the sum over I (M@) with the sums over I,(T7Sp).
Then, using (3.3.4) we estimate the sum over I(T7Sp) with sums over Ls(T7Sp). Finally,
we estimate sums over L (T7Sy) with a sum over L3 (MP).

In order to estimate the sum over I3(Mg), first remark that if A € M{ then 0A C
Sn = Uj—o T718y. Let A € I;(M3). We distinguish two cases:
(a) For some 1 < j < n, OA contains a point of intersection between two curves of 7778.
Since such intersection point is the image by 777! of an intersection point between curves
of T718y, which are finite, and thank to the linear complexity (4.2.2), we get that there
are at most Kon elements of I;(Mg) in this case.
(b) OA only contains intersection points between curves belonging to 778y for different
j. Let ja be the maximal 1 < j < n such that ANT 7Sy # (), and v € T~748; such
that v N A # (. Notice that v must intersect other curves from 9A. These curves belong
to T—1Sy for some j < ja. Applying T7, it appears that v must terminates at these
intersection points, and thus v C 9A. Since 7 is a stable curve, v belongs to I;(T748p)
by assumption on A. Finally, such a curve v belong to at most 2 elements of I5(MF).

Therefore

n
S e longay € Kane P+ CYS ST (el + 1o gy, (339
Aels(ME) J=1IWETL(T-18)

where we have extended e5»9 by Hoélder continuity to W from both sides — and noted
E ]03 (wy and |- [co () the corresponding norms — and C is the constant from Lemma 3.2.3.

In order to use (3.3.4), we decompose Sy = 2021 U; where each U; is a connected
curve such that %1 < |T7'U;| < ;. But first we need to compare the sum indexed
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by I(T—78y) with the one indexed by Is(ggl_l(Ui)). Let W € I,(T778p). Thus, each
W NT~IU; is a single maximal smooth component of length less than d;/3. In other words,
WNTU; € Is(gj‘-sl_l(Ui)). Therefore

lo
Y Mams<y X oy (8.3.10)
WEL(T150) =lwer g, i)

Now, using SSP.1 (3.3.4), in the case j > n1, we get that

1 n—j su j
3 lesng‘Ci(W) < 56( j+1)supg 3 fesjflg\ci(w)- (3.3.11)
Wel(@'L, (W) WEL(G;1(U1)

In order to estimate this last sum with the sum indexed by Ls(ggl_l(T_lUi)), notice
that

Lo(G)(T7'Uy)) © L] L@ (v)).
VELL(G)L, (TUy))
Thus
Z ’esng‘Ci(W) > Z Z ‘€Snfjg+sngT’ﬂ7] ‘Ci(v)
WELs(gi£1(T71Ui)) WeLs (ggll(TilUi)) VELs(giEj(W))
> C 2ty > €719 o (17 > €3] co (1)
WeL(GIL, (T—1Uy) VELy(GL (W)
> C_Qeinf”i—j(gﬁl) Z ‘esj_lg|ci(W),

WELs ()L, (T=1Uy))

where we used Lemma 3.2.3 for the second inequality, and the definition of Kfl_j(g,&)
for the third inequality. Notice however that (3.3.4) ensure that £, _;(g,d1) # 0 only for
n—j = ni. We will treat these troublesome j in a second time. Assume for now that
n1 < j < n—nj. Combining the above lower bound with (3.3.10) and (3.3.11), we get

Yoo 1oy < CeTIIRI (g, 6)7h DT €y (3:3.12)
Wels(T—18) WeLs(T—"So)

where we used that |_|§°:1 Ls(gj-l_l(T_lUi)) C Ls(T798y) — which is true if we choose the
§1-scaling G1(T~7Sp) to be adapted with the decomposition Sy = ||, U;.
Now, if n — n; < j < n, then we obtain from similar computations

1 .. .
Z lesng‘Ci(W) < 50231111‘96(71—%%1)supggz1 (9751)—1 Z ’esn1+jg‘ci(W)
W el (T-3Sp) WELs (T 50)
(3.3.13)

Finally, we estimate the sum over L¢(T~"Sp) with the sum over L3 (Mp). To do so, we
use similar arguments than for the estimate (3.3.9). Let W € Lg(T™"Sp). We distinguish
the two following cases:

(a) W intersects another curve from 77 "Sy. There are at most 2Ky elements of Ls(7T~"Sy)
in this case,

(b) W does not intersect other curves from 77 "Sy. In that case, W must be contained
in the boundary of an element of MZ, and thus an element of L% (M%). Now, there are
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at most 2067 " elements of Ly(T~"Sp) in the boundary of a single element of L9 (M3),
where C'is a large enough constant depending only on the billiard table.
Thus

Yoo gy S 2K2e™PI Ot DT (e coa- (3.3.14)
WEL(T~"So) ALl (M)

Similarly, for all n —n; < j < n,

Sny+i +j ~1 Snyt
Z le 1+39101(W) < 2Ke(MmH)swg 4 o Z |e5m1439| o, 4.
WELs(T~™M7180) AL (M)

(3.3.15)

Putting together (3.3.9), (3.3.12) and (3.3.14), as well as (3.3.13) and (3.3.15), we get

ni—1
> €% ooy < Kone™ ™9 +C Y > fes"g\cg(W) + €59 co
Aels(MF) J=1 Wels(T-18)

n—ni

+C Y > |€S"g|09r(W) + 1€ o ()
j=n1 Wel.(T—iS)

n
Sn Sn
+C ) e Yoo oy + 1€ co aw)
j=n—ni+1 Wel,(T-9S)
_ _n—nl )
< (Kon+ Cp) )e™™™9 +C Y ™905(g, )"0 Y |€S”g|cg(W) + 1% o ()
Jj=n1 WeLs(T—"Sp)

n

-7 - S n S, n

+C ST elnmswags (g.6)7 Z |21 | co (wry + €717 o )
J=n—ni1+1 WeLs(T7i7m™8p)

< (Kan + Gy, )e™s™P9 Cn| 2K,e™s'P9 4 051_1 Z ]eS”g]CO(A)
ALt (M)

n
+ Z Ch, | 2Kpemti)supg o 051 Z |€Sj+nlg|CO(A)
g=nomtl AL (M)

where in the last inequality we used (3.3.5) and the fact that n—n; +1 < j < n is equivalent
to 0 <n—j < ny—1, that is, in the second sum over j after the second inequality symbol,
the e("=9)5UP9 are uniformly bounded.

We now relate the sum over LJ! (M6+n1) to the sum over L% (M3). To do so, notice
that if A € L) (M6+nl), then it contains at most BIT™"1~" elements of L9 (M}), where
B = |P|. On the other hand, an element A’ € L% (M3) is contained in exactly one element
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of LI (M), Thus

> |57+ | o 4) = > S eI coga

AeLi (M) AL (M) ATeL (M)
ACA’

< ) Y. MRt oo g

5 i+n ) n
AELM (M) A'eL M (MP)
ACA’

< ¥ S eS| o

AL (MR) ALt (M)

AcCA’
o 5.
< Bitni—nnosupg Z ]e Jg|CO(A)’
AL (M)
and therefore,
n n
Sitn j+n1—n _mnisu S,
> Yoo lemIcoy < D BITMTIEMIRSY T (e gog g
j=n—ni+1 AELﬁl (Mé+"0) j=n—-ni+1 AELﬁl (M2)

n

< Z Bitni—nnisupg,(n—j)infg Z |€Sng|CD(A)

j=n—mitl AEL(M})
_ s,
<G D2 1e™oogay.

AL (Mp)

Using this last estimates, we obtain

> 1% coga) < (Kon + Cy + Cyen)e™™9 + (Ce+ Cu)di ' 3 €% 0oa),
Ael (M) AeLM (M)

where Cy ¢ is a constant coming from the summability assumption (3.3.5), and C_'n1 depends
only on n; and g.
Finally, since I;(M@) U L3 (Mp) = MR, we get that

> |€S”g|00(A) — (Kaon + énl + ngn)ensum’
AEMY

> 1Moo > ——
1+ (C Chn, )07
AeLil(Mg) + ( gt t 1) 1
Since lim ilog 32 \65"9|00(A) = P.(T,g) and by the assumption P.(T,g) > supy,
n—4oo ™ AGMS
there is an integer ng such that for all n > no,

1

Z |€S"g‘co(A) — (Kz’rl + énl + Cg,gn)e"SUPg > 5 Z |€S"Q‘CU(A).
AeMp AeMg

Thus, there exists Cy, > 0 such that for all n > ny the claim holds.

We now prove the second part of Lemma 3.3.3. Assume that g is a (M, a)-Holder
potential with P,(T, g) — supg > solog2 and log A > sup g — inf g. From the convexity of
the topological pressure (Theorem 3.2.1), we get that ¢t — P, (T, tg) is a convex function.
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Thus, the map t — Py (T,t(g —supg)) = P.(T,tg) — tsupg is continuous on [0, 1]. Since
for all s <t we have

Z |€Snt(g—supg)|CO(A) gen(t—é‘)sup(g—supg) Z |€Sn5(9—SUP9)|CO(A) = Z ’eSns(g—supg)|CO(A),
AEM? AEM? AEME

the map is nonincreasing. Thus
P(T,g) —supg = P(T,g —supg) < Pu(T,0) = hs,

where h, is the topological entropy from [BD20]. Therefore we have h, > splog?2 and
estimates from [BD20] can be used. For all W € W?* with §; > |W| > 61/3 and all n > ny,

. 92 2 .
S 5oy > P IILE (W) > S pgh (W) > Zepen oAty
VeL’ (w)
> ;COen(inf g+P«(T,0))

where we used [BD20, Lemma 5.2] for the second inequality, and Propositions 4.6 and 5.5
from [BD20] in the third inequality .

Thus we get that £;(g,01) > %coe"(inf9+P*(T’0)). Since® P.(T,0) = h. > logA, we
then get the summability of the sequence (e""P9¢%(g,51)"")p>pn,. The summability of
eI (g, 81) ! is obtained similarly by considering lower bounds on # L3 (W), also given
in [BD20]. 0

We now introduce the precise definition of SSP.2: A potential g is said to have e-SSP.2
if it has e-SSP.1, if there exists 11 : (0, +00) — N such that

> €% oo

W;eLS (W) 1—3¢ _ -

> , VW e W? ¥n > ni(|W)), 3.3.16

E ‘esng’CU(Wi) 1—¢ (| |) ( )
W;eG3 (W)

and if the time reversal " of (3.3.16) holds, where § is the corresponding constant from
e-SSP.1. A potential is said to have SSP.2 if it has e-SSP.2 for some ¢ < 1/4.

Corollary 3.3.4. If g is a (M}, a)-Hélder potential such that P(T,g) —supg > so and
log A > supg — inf g, then there exists Cy > 0 such that g has €-SSP.2 for all ¢ > 0
and n (|W]) = C2n1W’ where § and ny are the corresponding constants from
Lemma 5.5.2.

Proof. From the Lemmas 3.3.2 and 3.3.3, such a potential has SSP.1. We thus only prove
(3.3.16).

The proof is essentially the same as the one for Lemma 3.3.2, except that for curves
shorter than ¢/3 one must wait n < |log(|]WW|/d)| for at least one component of G2 (W) to
belong to L3 (W).

5. We can choose the scale d; from [BDQO] to agree with the one here. The constant ¢y comes
from [BD20, Proposition 5.5] and depends on d;.

6. log A is a lower bound on the unstable Lyapunov exponent of T'. Integrating against usgrp gives the
desired inequality.

7. As for (3.3.4), we call time reversal of (3.3.16) the same estimate but with S,g and W € W* replaced
by S, 'g and W € W,
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More precisely, fix ¢ > 0 and the corresponding § and n; from Lemma 3.3.2. Let
W € W with |[W| < §/3 and take n > ny. Decomposing G¢(W) and S3(W) as in
Lemma 3.3.2, we estimate the second part as before. For the first part, we have to split
the sum between Z3(W) and the rest, which is estimated as before.

For the first part, concerning Z% (W), for § sufficiently small, notice that since the flow
is continuous, either #G? (W) < K1+ 1 by (4.2.2) or at least one element of G’ (W) has
length at least §/3. Let ng denote the first iterate [ at which GP(W) contains at least one
element of length more than §/3. By the complexity estimate (4.2.2) and the fact that
|T~"2W| > C1A"2|W| by hyperbolicity of T, there exists Cy > 0, independent of W € VAVS,
such that ny < Callog(|W]/4)|.

Now, for n > ns,

S 1oy <D €929 o > €529 co gy,
WLETE (W) Wregs, (W) WieTs_, (W)

n—ng

n—m

< K(Kng 4 1)e™"%P9 x 2(Kny + 1) o e(n—n2)supg
and by hyperbolicity and Lemma 3.2.3,

Z ’esng‘CO(Wi) > C_l‘QS"QQ‘CO(W/) Z e(n—nz)infg
WieGh (W) WieGs (W)

n—ng

> %Clcfleng infge(nfng)(inf g+log A)

where W’ € G3_(W) is such that |W’| > 6/3. Therefore,
> €5 ooy
Wi eZ5 (W)

> €SI,
W;eGS (W)

< 601—106n2(sup gfinfg)Z{(l;(n2 + 1)(K7’L1 + 1)%6(n7n2)(supgfinf g—log A)

< 2051026”2(“"gfi“fg)K(Kng + 1)5”/”1.

Since ny < Cy|log(|W|/§)], we can bound this expression by € by choosing some Cy > 0

%. For such n, the left hand side of (3.3.6) is

bounded by ¢ + 1= < 22 which completes the proof of the corollary.

1-e’
As usual, the time reversal of (3.3.16) is obtained by performing the same proof, but

and n large enough so that n/n; > Cs

with the time reversal counterpart of Go(1), for unstable curves . O

3.3.3 Exact Exponential Growth of Thermodynamic Sums — Cantor
Rectangles

It follows from the submultiplicativity in the characterisation of P, (T, g) that

e"Px(Thg)  —infy Z sup (%9 @)
Aemp ©EA

for all n. In this subsection, we shall prove a supermultiplicativity statement (Lemma 3.3.7)
from which we deduce the upper bound for ZAeMg SUD e A e(5n9)(@) in Proposition 3.3.8
giving the upper bound in Proposition 3.5.1, and ultimately the upper bound on the
spectral radius of £, on B.

The following key estimate is a lower bound on the weighted rate of growth of stable
curves having a certain length. The proof will crucially use the fact that the SRB measure
is mixing in order to bootstrap from SSP.1.



62 Chapter 3. A family of natural equilibrium measures for Sinai billiard flows

Proposition 3.3.5. Let g be a (M}, a)-Hélder potential with P.(T,g) — sup g > solog 2
and which has SSP.1. Let §1 be the value of § from the condition SSP.1. Then there exists
co > 0 such that for all W € W* with |W| > 61/3 and n > 1, we have

~1
S e ooy =0 Y. €5 o
W,€G20 (W) AeM?

The constant ¢y depends on d1.

The proof relies crucially on the notion of Cantor rectangles. We introduce this notion as
in [BD20, Definition 5.7]. Let W*(z) and W*(z) denote the maximal smooth components
of the local stable and unstable manifolds of x € M.

Definition 3.3.6. A solid rectangle D in M is a closed connected set whose boundary
comprises precisely four nontrivial curves: two stable manifolds and two unstable manifolds.
Given a solid rectangle D, the (locally maximal) Cantor rectangle R in D is formed by
taking the points in D whose local stable and unstable manifolds completely cross D. Cantor
rectangles have a natural product structure: for any z, y € R, then W*(z) N W*(y) € R.
In [CMO6, Section 7.11], Cantor rectangles are proved to be closed, and thus contains their
outer boundaries, which are contained in the boundary of D. With a slight abuse, we will
call this pairs of stable and unstable manifolds the stable and unstable boundaries of R.
In this case, we denote D by D(R) to emphasize that it is the smallest solid rectangle
containing R.

Proof. Using [CM06, Lemma 7.87], we may cover M by Cantor rectangles Ry, ..., Ry
satisfying
g mw«(W"(z) N R)
zeR myyw(W(x) N D(R))

> 0.9, (3.3.17)

whose stable and unstable boundaries have lengths at most 1—1061, with the property that
any stable curve of length at least d1/3 properly crosses at least one of them. A stable curve
W € WS is said to properly cross R if W crosses both unstable sides of R, W does not
cross any stable manifolds W#(x) N D(R) for « € R, and the point W N W*"(z) subdivides
the curve W*(xz) N D(R) in a ratio between 0.1 and 0.9 (i.e. W does not come to close to
either stable boundary of R). The cardinality k is fixed, depending only on ;.

Recall that L1 (M%) denotes the elements of M?, whose unstable diameter is longer
than d;/3. We claim that for all n € N, at least one R; is fully crossed in the unstable
direction by a subset L of M°, such that

x| =

-1 —1
Z ‘GS" g|CO(A) = Z |€S” g’CO(A)- (3318)
AeL AEL} (MO )

Notice that if A € M?,,, then DA is comprised of unstable curves belonging to U ; TS,
and possibly Sy. By definition of unstable manifolds, TSy cannot intersect the unstable
boundaries of the R;; thus if AN R; # (), then either A terminates inside R; or A fully
crosses R;. Thus elements of L' (M%) fully cross at least one R; and so at least one R;
must be fully crossed by a large fraction L of L3'(M?Y) in the sense of (3.3.18), proving
the claim.
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For each n € N, denote by ¢, the index of a rectangle R; which is fully crossed by a
large enough subset L, of L,(M%,), in the sense of (3.3.18).

Fix 6, € (0,01/10) and for ¢ = 1, ...k, choose a “high density" subset R} C R; satisfying
the following conditions: R; has a non-zero Lebesgue measure, and for any unstable
manifold W* such that W* N R # () and |W"| < ., we have W > 0.9. (Such a
0x and R} exist due to the fact that my «-almost every y € R; is a Lebesgue density point
of the set W*(y) N R; and the unstable foliation is absolutely continuous with respect to
Usre or, equivalently, Lebesgue.)

Due to the mixing property of pusgrs and the finiteness of the number of rectangle R;, there
exist € > 0 and n3 € N such that for all 1 <4,j <k and all n > ng, psge(R; NT"R;) > ¢.
If necessary, we increase ng so that the unstable diameter of the set T~ "R; is less than 9,
for each i, and n > ngs.

Now let W € W* with |W| > 6,/3 be arbitrary. Let R; be a Cantor rectangle that is
properly crossed by W. Let n € N and let i,, be as above. By mixing, psgs(R;, NT "™ R;) >
e. By [CM06, Lemma 7.90], there is a component of T3/ that fully crosses R} in the
stable direction. Call this component V € G2 (W). Thus

—1 . —1 1 —1
> ey = X e oogmwy = Y infle™ > o Y S‘jp|€s" 9|
WieGa0 (V) WieGoo (V) A€Ly, 9 Ackn

-1
> €5 Y oogay.
AL (MO )

>

x| =

We now have to relate the lhs to the analogous quantity where V' is replace by W.

eon9 .
S e = Y Y A ooy

i m3\/. i
J i
n 1
D S e CTT DS
= J : 00 n3 /. .
Vjegff#ns(w) WiEQiO(W) #{‘/J € gn+n3(W) ’ T 3‘/j C W’L}
T”SVJ'CWi
Coy _ Céy _
> #M”36 n3sup g Z |eSn+n3g‘CO(Vj) > #Mnge n3supg Z |€Sn+n3g|co(vj)
0 v;egh (W) 0 V,€600 (V)
J n+ng J n
Céy _ . 1 Coé _ » —1
> #M”Be ng(sup g—inf g) Z \esngfco(vj) > W#Mm”e ng(sup g—inf g) Z ‘eSn g’CO(A)
0 V-egéO(V) g 0 AeL51 (MO )
J n u —n
1 Cdo ; -1
> O 51— —ng(sup g—inf g) Sn'g 7
n101 k‘Cg #Mgs € Z |6 |CO(A)

AemM®

for all n > max{ng,n3}, where we used Lemma 3.3.3 for the last inequality. Thus the
proposition holds for all n > max{ngy,n3}. It extends to all n € N since there are finitely
many values of n to correct for. O

Lemma 3.3.7 (Supermultiplicativity). There exists a constant ¢1 such that for alln € N,
and all 0 < j < n, we have

n n—j S-ﬁl
e oy = e >, 1€ coay Y. €% Ycoay.
AeMy AEMg_j AGMO,j
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Proof. Fix n,j € N with j < n. First, notice that

Sng s (Sn,jg—i-S.*lg)oTj . Sp_jg: ST1g
Z €7 co(ay 2 Z 1%fe J = Z lgfe 12fef

AEMy AeMg AeM™ 7
—J
. . . st
> inf ¢5n—39 infe”i 9
> > i > in
Aemyd BeM®
BNA#)
2 S S1lg
>Cq Y e oy Do 1€ o
AeMp BeM?
BNA#)
2 S ST1lg
>Cp Y e oy Do 1€ o),
Aemp™i BeM?
BNA#0

where we used Lemma 3.2.3 twice for the forth inequality.
Recall that L3 (MY ;) denotes the elements of MY ; whose unstable diameter is longer

than ¢;/3. Similarly, L% (./\/lg_j ) denotes those elements of My’ whose stable diameter
is larger than 0;/3. By Lemma 3.3.3

Yoo oy = Ot Y (€% o), forn—j > na.
AeLi (M) AeMg™

Let A € LS(Mg_j) and let V4 € W* be a stable curve in A with length at least 01/3.
By Proposition 3.3.5,

. st
S e gy =0 Y. €% I coawy)-
Wi€G0 (V) AeM?;

Each component of Q]‘-SO(VA) corresponds to one component of V'~ S_; (up to subdivision
of long pieces in Q}SO (Va)). Thus

. S._l n—j S'_l
Z ‘6571, Jg|CO(A) Z ’6 b g|CO(B) > Z ’es Jg‘co(A) Z ‘6 J g|Co(TjWi)

AeMy™ BeM?, A€L (M) WG (Va)
BNA#)D
Sp_s S;
> ) e ooy Do e oo
AL (M) Wi€G1° (V)
S S;
>C Y e oy Y. €7 cogm),
AeMp™I BeM®

proving the lemma with ¢; = cOC’nlCQ(sl when n — j > no. For n — j < ng, since
n—j

S e ooy < | DD (e coga
Aemy™? AeMg

we obtain the lemma by decreasing c; since there are only finitely many values to correct
for. O
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Proposition 3.3.8 (Exact Exponential Growth). Let g be a (M}, a)-Hélder continuous
potential such that P.(T,g) —sup g > 0 and which has SSP.1. Let ¢y be the constant given
by Lemma 3.3.7. Then for all n € N, we have

2
Z |@Sng’CO(A) < ZenP(T),
AeMy “

Proof. Let h(n) = e "P+(T9) |eS“9\CO(A). Suppose there exists n; € N such that
AEMD

¥(ny) > 2/c1, where ¢ is the constant from Lemma 3.3.7. Then

Vm) > erm)® = —(erm))?,

1

Integrating this bound, we have inductively for any k > 1,
k 1 2k
Y(2°n1) > a(cm(nl)) :

This implies that limg_, 4 oo ﬁ log 1 (2Fny) > n% log 2 > 0, which contradicts the definition
of 1(n) (since limy,— ;o0 + log¥)(n) = 0). We conclude that ¢ (n) < 2/c; foralln > 1. O

Remark 3.3.9. Notice that for g = 0, the condition P.(T,g) — supg > solog2 becomes
hs > solog 2, where h, is the topological entropy of T" defined in [BD20]. This is precisely the
condition of sparse recurrence to singularities from [BD20], and as discussed there, we don’t
know any example of billiard table not satisfying this condition. Notice that by continuity,
if hy > splog?2 holds, then P, (T, g) —supg > splog?2 holds for all g in a neighbourhood
of the zero potential. For potential g close enough to 0, we have log A > supg — inf g.
Therefore, by Lemmas 3.3.2, 3.3.3 and Corollary 3.3.4, there exists a neighbourhood of
g = 0 (in the (M}, a)-Hélder topology) in which every potential has SSP.1 and SSP.2, and
thus all the consequent results from the present section also hold.

In particular, for any t € R with |¢| close enough to zero, the potential —t7 has SSP.1
and SSP.2.

3.3.4 Estimates on norms of the potential

In Section 3.6, we will need similar estimates as in the present section but with the C°
norm replaced by the C% norm, 0 < 8 < 1 /3. The following lemma shows that previous
estimates are still valid up to a multiplicative constant.

Lemma 3.3.10. For every bounded (./\/l(l), a)-Hdélder continuous potential g, there exists
C > 0 such that for all W € W*, alln > 0 and all W; € GS(W), 59| caqwy) <
C]eS"9|CO(WL.), where ¢ € (0, dp].

Proof. Let g be such a potential. Let ¢ be such that g > ¢. Let W; € Q:i(W). Then

n—1

_ k
Hiy (e579) <37 (e 9T 59| oo gy Hiy (g 0 TF)
k=0
n—1
< e coawyy Y e “CA™|glcaan
k=0

1

S -
<le g|C°(Wi)Cl —a¢ “lglce
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where for the second inequality we adapted the argument from [BD20, eq (6.2)], so that

9(T*z) — g(T*y) dyw (TFx, T*y)>
dw(Tkl‘, Tky)a dW($7 y)a

< CHuyy, (9)17°T* G0,y < CA™* gl

O]

3.4 The Banach Spaces B and B, and the Transfer Opera-
tors L,

In Section 3.6, we construct the equilibrium state y, for 7" under the potential g out of left
and right eigenvectors, 7 and v, of a transfer operator £, associated with the billiard map
and the potential g, acting on suitable Banach spaces B and B,, of anisotropic distributions.
In this section, we define the Banach spaces B and B,, as well as the transfer operator £,.

3.4.1 Motivation and heuristics

The spaces B and B,, are the same as in [BD20], but we recall their construction not only
for completeness, but also to introduce notations. The norms we introduce below are
defined by integrating along stable manifolds in W?*. We define precisely the notion of
distance dyys (-, -) between such curves as well as a distance d(-, -) defined among functions
supported on these curves.

In the setup of uniform hyperbolic dynamic, the relevant transfer operator to study
equilibrium states associated to a potential g — see for example [Ball8] — can be defined on

Lyf = (eg / )oTl

measurable function f by

JsT

where J®T is the stable Jacobian of T'. Ignoring first the low regularity of J*T', we see
from the hyperbolicity of T that the composition with T~! should increase the regularity
of f in the unstable direction, while decreasing the regularity in the stable direction.
By integrating along stable manifold against the arclength measure, we hope to recover
some regularity along the stable manifold — notice that by a change of variable, J*T does
disappear. Morally, the weak norm | - |, and the strong stable norm || - ||; measure the
regularity of the averaged action of £,. On the other hand, the strong unstable norm || - |,
capture the regularity when passing from a stable manifold to another one. Here, this
regularity should be though as a log-scaled Holder regularity.

3.4.2 Definition of the Banach spaces and embeddings into distribution

Let W? denote the set of all nontrivial connected subsets W of stable manifolds for T
so that W has length at most dg. Such curves have bounded curvature above by fixed
constant [CMO06, Prop. 4.29]. Thus T~'W?* = W, up to subdivision of curves. Obviously,
W C WS, We define WU similarly from unstable manifolds of T'.

Given a curve W € W?* we denote by myy the unnormalized Lebesgue (arclength)
measure on W, so that |W| = my (W). Since the stable cone C* (3.2.1) is bounded away
from the vertical, we may view each stable manifolds W € W?* as the graph of a function
ow (r) of the arclength coordinate r ranging over some interval Iy, that is

W ={Gw(r) = (r,ew(r)) | r € Iy }.
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Given two curves Wi, Wy € W?, we may use this representation to define a “distance"®

between them. Define

dys (W1, Wa) = [Twy & Twy | + lewy — ewalor (ny, i)

if Iyy, N Iy, # 0, and dyys (W7, Wa) = +o00 otherwise.
Similarly, given two test functions ¥; on Wi, and 12 on Ws, we define a distance
between them by

d(¥1,92) = [¢1 0 Gw, — Y2 0 Gwaloo(ry, niy,) -

whenever dyys (W7, W) is finite, and d(v1,12) = 400 otherwise.

We can now introduce the norms used to define the spaces B and B,,. These norms will
depend on the constants eg > 0 and dp € (0,1), as well as on four positive real numbers «,
5, v and ¢ so that

0<fB<a<min{l/3,a,}, 1<20 <T9)=swg <<y

where g is a given, bounded (M3}, ay)-Hélder potential such that P.(T, g) —sup g > sq log 2.

Remark 3.4.1. The condition a < 1/3 is needed for [BD20, Lemma 4.4], which is used to
prove the embedding into distributions. The number 1/3 comes from the regularity of the
density function of the conditional measures in the disintegration of usrp against the stable
foliation. The bound o < a4 will make possible to see g as an element of B. The upper

bound on «y arises from the use of the growth lemma 3.3.1. The dependence on §y comes
from the definition of W?.

For f € C'(M), define the weak norm of f by

flo= sup  sup /f¢dmw-
wews ypeCc*(Ww) JW

[Ylcamw)<1

Similarly, define the strong stable norm of f by’

Ifls= s swp [ fodmy,
Wews YeCB (W) w

WJ‘CB(W)S| log |VV||’Y

(note that | f|, < max{1,|logdo| 7}||f]|s). Finally, for ¢ € (0,~), define the strong unstable
norm 'V of f by

/W1 frdmy, — /W2 [ 2 dmyy, | .

Il fllw = sup sup sup |logel®
e<eg Wy ,WoeWS QﬂiECO‘(Wi)
dyys (W1,W2)<e "Lﬂilca(wi)gl
d(b1,12)=0
In order to use functional analysis results, we need to work with complete spaces. Since
C'(M) is not complete for the norms'! ||, and |- ||s+ || - ||u, we will use the corresponding

completed spaces.

8. Actually, dys is not a metric since it does not satisfies the triangle inequality. It is nonetheless
sufficient for our purpose to produce a usable notion of a distance between stable manifolds.
9. The logarithmic modulus of continuity in ||f||s is used to obtain a finite spectral radius.
10. The logarithmic modulus of continuity appears in ||f||. because of the logarithmic modulus of
continuity in || f||s. Its presence in || f||. causes the loss of the spectral gap.

_r_

11. For example, the sequence (% sin 27rn? ]

) is a Cauchy sequence of C* (M) functions with respect

to | - |w, but diverges in the C*'-norm.
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Definition 3.4.2 (The Banach spaces). The space B, is the completion of C*(M) with
respect to the weak norm | - |, while B is the completion of C*(M) with respect to the
strong norm, ||l = 1|+ lls + || - |l Notice that since | -|w < || - ||B, there is a canonical
map B — By,.

Since the main purpose of the spaces B and B,, is to contain left and right eigenvectors
of a transfer operator acting on those spaces, a crucial feature of B and B, is that we can
see them as subspaces of the distributional space (C'(M))*. Thanks to this property, we
will be able to construct a positive distribution by pairing the left and right eigenvectors,
and to extend it into the desired equilibrium measure. In order to state this result, we need
to introduce some other spaces, on which the transfer operator will be naturally defined
(and then extended to B and B,,).

Define the usual homogeneity strips

o= {(n) € Ml 5 -3 <0< G~ ) K3 ko,

and analogously for k < —kg. Define Wy, C W? as the set of stable manifolds W € W?*
such that T"W lies in a single homogeneity strip for all n > 0. We write ¢ € C*(Wy;)
if v € C*(W) for all W € Wy; with uniformly bounded Hélder norm. The norm of
¥ in C*(Wyy) is defined to be the sup over all the C*(WW) norms, with W ranging in
Wy;. Similarly, define the space C$ (Wy;) containing the functions 1 such that ¢ cos ¢ €
C“(Wyp). The norm of ¢ in C§(Wyy) is defined to be the norm of 9 cos in C*(Wy).
Clearly, C*“(Wgp) C C&(Wi)-

The canonical map By, — (F)* (for F = C1(M), or F = C*(Wg})) is understood in
the following sense: for f € By, there exists C'y < oo such that letting f,, € C'(M) be a
sequence converging to f in the B, norm, for every f € F the following limit exists

f(@) = lim / Futh dptsen

n—-+o0o

and satisfies | f(¥)| < Cy|[¢]| 7.
We summarize the properties of these Banach spaces obtained in [BD20] in the following
proposition.

Proposition 3.4.3. The spaces By, and B are such that:
(i) The following canonical maps are all continuous

CHM) — B — By — (CYWE))* — (CH(M))*,

and the first two maps are injective. In particular, we also have the two injective and
continuous maps

(By)* — B* — (CY(M))*.
(ii) The inclusion map B — By, is compact.
Proof. The point (i) is the content of [BD20, Proposition 4.2]. We detail the proof of
the injectivity of the map B — B,,. To do so, we prove that the formula defining | - |,

(respectively || - ||s and || - ||.) can be extended when f € B,, (respectively f € B), and that
it coincides with the norm of f.
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First, notice that when f € C1(M), then for given W € W? and ¢ € C%(W) we have
Jw fdmw < |flwl¥lcamyy. Thus the map f +— [ fibdmy can be extended uniquely
to By.

Now, let f € By, and € > 0. Let f, be a Cauchy sequence of C'(M) functions converging
to f in By,. Thus, there exists some n. such that for all n > ng, |f — folw <. Let W € W#
and ¢ € C*(W) with |[¢|cayy < 1. By definition of |fy|, for all n, there exist W), and
VY € C*(Wy) with [, |ce(w,) < 1 such that

X

‘/ fn¢nden_‘fn’w <e
Wha

Thus, we have

/Wn Fibn dm, — /Wn futon dimyy,

< ‘f - fn‘wwjn|C°‘(Wn) <eg, Vn2=>ne,

and so ’|fn|w - an Jin dmw,

< 2e. In particular, we get

sup sup / fodmw = |flw-
WeEWs peCa(W)

[Pl e (wy <1
We now prove the reverse inequality. Using the same notations as above, there exist

V e W® and p € C*(V) with |¢[ca(y) < 1 such that

fgodmv — sup sup / fydmw| <e.
Wews ¢eC*(W)
[¥]ca )<l

Now, since

< ’f_fn’w<€; Vn = ne,

’/anwdmv—/ Jedmy

we have that [ Supy cyys SUp yecaw) fiy f ¥ dmw — [y, fup dmy| < 2¢ for all large enough
[¥]ca W)<1

n. In particular

sup  sup / Fdmyy < |fulw + 2¢.
Wews ¢eC*(W)
[Ylca )<l
Taking the limit in n, we get the claimed inequality.
The corresponding results for f € B and norms || - ||s and || - ||,, are obtained similarly,

noticing that for all f € C'(M),
/W oo dmw <1 fllsllcsw) | og IWI1 7 < If |81l oo | Log W77, YW € W2, Wy € CP (W)

Thus the integrals against C?(W) functions in the definition of || - ||; makes sense even
when f € B. On the other hand, since |- |, < || - ||8, the integrals in the definition of || - ||,
can be extended to f € BB as in the above case where f € B,,.

We can now show the injectivity of the canonical map B — B,. Let f € B with
||flls # 0. If || f||s # O, then the fact that |f|, # 0 follows from the definition of C* (W)
as the closure of C1(W) in the C” norm, so that C%(W) is dense in C*(W). Now, if
| f|lw # 0, then by definition of || - ||,,, we can find some W € W* and ¢ € C*(W) so that

[, f dmyw > 0. Thus |f], # 0.
The point (ii) is precisely the content of [BD20, Proposition 6.1]. 0
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3.4.3 The transfer operators

We may define the transfer operator £, : (Co(Wp))* — (C(W?))*, for a given weight
function g by
Lof(W) = feFT), ¥ e W),

This operator is well defined because, if ¥ € C*(W?) then e o T € C*(W?). Fur-
thermore, since J*T and cos ¢ are 1/3-log-Hélder on homogeneous stable manifolds, and
cos ¢/ J*T is bounded away from 0 and +oo also on homogeneous stable manifolds, we get
that 1/J°T € C% (Wsg). Thus e9%% € C& (W5).

When f € C'(M), we identify f with the measure '?

fhsre € (Coos (W)™ - (3.4.1)

The measure above is (abusively) still denoted by f. For f € C'(M), we have

f:u‘SRB /feg dpsrs = /(eg J{T> © T_lw dpsrs

Thus, due to our identification (3.4.1) we have L,f = (e9f/J*T) o T~1, as claimed above.

Proposition 3.4.4. For any fized (M(l),ozg)-HO'lder potential g and corresponding spaces
B and By, :

(i) If f € CY(M), then Ly(fusns) € B.
(i) The operators Ly : (C*(M),||w) = Bw and Ly : (CY(M), ||-||8) — B are continuous.
In particular, L, extends uniquely into operators on both B,, and B.

Proof. Let f € CY(M). Consider first the case g = 0. Then, by [BDyn, Lemma 4.3,
Remark 4.11], Lof € B. Now, for g # 0 a piecewise Holder potential, we can use [DZ11,
Lemma 3.7] to get that ef o T~! € B (checking that the absence of homogeneity layers
does not affect the computations). Since L,f = €9 o T Lof, we get that Lyf € B, where
B has been constructed according to g.

Point (ii) follows from Proposition 3.5.1, in the case n = 1. O

3.5 Norm Estimates and Spectral Radius

The purpose of this section is to state and prove sharp upper and lower bounds on the
norm of the iterated operator £y, both in By, and B.

Proposition 3.5.1. Let g be a (Mo,ag)—H{)’lder continuous potential. Assume that
P.(T,g) —supg > splog2 and that SSP.1 holds. Then there exist 6y and C' > 0 such that
forall f € B,

¢

L2 flw < —e T, Yn>0; (3.5.1)
0
n C nP*(Tg
125 flls < 0 Iflls, VYn>0; (3.5.2)
1£5 fllu < %(HfHu + [ flls)em T - wn > 0. (3.5.3)

12. To show the claimed inclusion just use that dusrs = (2|0Q|) " cos p drdp.
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It follows that the spectral radius of L4 on B and By, is at most eP+(Tog),

Remark 3.5.2. It is possible to obtain similar estimates without the assumption SSP.1,
however an additional factor ™ appears on the right hand sides, for any arbitrary € > 0.
We indicate places in the proof where it happens and how to correct for. The conclusion
about the upper bound of the spectral radius still holds. Nonetheless, in order to construct
nontrivial maximal eigenvectors, we will need the estimates from Proposition 3.5.1.

Theorem 3.5.3. Let g be a (M, ay)-Hélder continuous potential. Assume that P.(T,g) —
supg > sglog2 and that SSP.1 holds. Then there exists C' such that

01 np.(T
1£51]1s > [£51]w > O e o),

Proof of Proposition 3.5.1. Let §y be the scale associated to g as in the beginning of
Section 3.3.2. The set W? is defined with respect to the scale dg.

We start with the weak norm estimate (3.5.1). Let f € CY(M), W € W* and
Y € C*(W) be such that [¢|cayy < 1. For n > 0 we use the definition of the weak norm
on each W; € G2 (W) to estimate

/W Ly fpdmy = ) / .fesngon"dei < Do €9 ey [T (coqw,)-
wieglow)” ! WieG0 (W)
Clearly, sup |1 o T"|w, < supyy |[¢|. For z,y € W;, we have,

(T") — $(T)| dw (T, T")°
dW(Tn.T, Tny)a dW(.T, y)a

< Cllcaw)| I T Coqw,) (3.5.4)
S OA™Pleawy
so that Hyj, (YoT™) < CA™"Hy,(¢) and thus [T |caw,) < Cli]ca(w). By Lemma 3.3.10,

we get,

i 2C
/ Lo fpdmw < Clflwl¥lceqry D, €79 ooy < | flwltlcaqry D 1€7cocay,
w 5 do n
Wi €GO (W) AeMg

2C
< |f’w’w‘0a(W)enP*(T7g)7
0150
where the second inequality uses that there are no more than 24, L curves W; of Go(W)

per element of M7, and the third inequality uses the Exact Exponential Growth from
Proposition 3.3.8 '%.

Now we prove the strong stable norm estimate (3.5.2). We can choose m so large
that 2%07(Km + 1)1/™ < eP(T9)=swpg Let W € W*, ) € CP(W) such that [leswy <

13. without the assumptions SSP.1 and SSP.3, Proposition 3.3.8 might not hold. Still, for € > 0 and all

nx1l, > |eS’"g|Co<A) < C. e P=(T9)+¢) hecause of the subadditivity from Theorem 3.2.1.
AEMT
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|log [W||7. Then, by definition of the strong norm

[, cisvamw = > [ oo samy,
Wi€G0 (W)
< D0 sl o T s €59 cs iy | log [ Wil |7
WieGn? (W)

log [W]\"
<Clfll: 2 <1og|W|> 122 lcaury

Wiegio (W)

n
S CYIfIIs227+1 61 Y2 2907 (Km 4 1)/ eI *Ps N7 (eS8 o
j=1 Aemy™?

where for the last line we used Lemma 3.3.1(b) and Lemma 3.3.10. Let

n
D, = G255 3 28 (Ko £ 19 [[eS|cng
j=1 Aemy™

From Proposition 3.3.8, foralln > 1, Y HeS“QHCO(A) < %e”P*(T’g). Let 1 = P(T, g) —
AEM?

sup g — log(2°07(Km + 1)1/™). Thus '*,

c > 1 C
D, <2t Z (P (Tg)—e1)jo(n=5)P«(Ty9) < 927+1 e P-(T,9)
0150 1 — € - 6150

This conclude the proof of (3.5.2).

Finally, we now prove the strong unstable norm estimate (3.5.3). Fix & < ¢, and
consider two curves W1, W2 € W* with dyys (W, W?) < &.

For n > 1, we describe how to partition 77 "W* into “matched” pieces U; ¢ and “un-
matched” pieces Vf, {=1,2.

Let w be a connected component of W'\ S_,,. To each point z € T~ "w, we associate a
vertical line segment v, of length at most CA~"¢ such that its image T"~,, if not cut by a
singularity, will have length C&. By [CM06, §4.4], all the tangent vectors to Ty, lie in
the unstable cone C*(T"z) for each i > 1 so that they remain uniformly transverse to the
stable cone and enjoy the minimum expansion given by A.

Doing this for each connected component of W'\ S_,,, we subdivide W'\ S_,, into
a countable collection of subintervals of points for which 7™, intersects W2\ S_,, and
subintervals for which this is not the case. This in turn induces a corresponding partition
on W2\ S_,.

We denote by Vi’ the pieces in T~"W* which are not matched up by this process and
note that the images 7"V} occur either at the endpoints of W or because the vertical
segment v, has been cut by a singularity. In both cases, the length of the curves T "Vf can
be at most C& due to the uniform transversality of S_,, with the stable cone and of C*(x)
with C%(x).

In the remaining pieces the foliation {77} cr-ny1 provides a one-to-one correspon-
dence between points in W' and W?2. We further subdivide these pieces in such a way that

14. Here, again, conclusion from Proposition 3.3.8 can be replaced.
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the lengths of their images under 7" are less than dg for each 0 < ¢ < n and the pieces are
pairwise matched by the foliation {7,}. We call these matched pieces U f . Since the stable
cone is bounded away from the vertical direction, we can adjust the elements of G% (TW*)
created by artificial subdivisions due to length so that Uf C I/Vf and V,f C Wfi for some
W, Wf € GO (W) for all j,k > 1 and £ = 1,2, without changing the bounds on sums over
Goo(W*). There is at most one Uf and two Vf per W} € Go(WY).

In this way we write W* = (UjT"Uf) U (U;T"Vi). Note that the images TV} of the
unmatched pieces must be short while the images of the matched pieces U. f may be long or
short.

We have arranged a pairing of the pieces Uf = GU]e (I;), £ = 1,2, with the property:

If Uj1 ={(r, Yy (r)) | r € I;} then sz ={(r, Pu? (r)) | r €L}, (3.5.5)

so that the point x = (7, @1 (r)) is associated with the point z = (r, ¢y2(r)) by the vertical
J J
segment vz C {(7, 8) }se[—r/2,r/2), fOr €ach r € I;.
Given v, on W* with Vel cowey < 1 and d(¢1,¥2) < €, we must estimate

[ atindmu, ~ [ 5 oadm,

<Y
13

+>
J

/ ! firo Tnesngdm‘
Vi

/ fib1 o T"e59dm — / fapg o T”esngdm‘.
Uf Uz

(3.5.6)
We first estimate the differences of matched pieces U;. The function ¢; = (11 0 T"e9) o

Gyo G[;% is well defined on Uj2 , and we can estimate each difference by
i i

[ o [ ot <
Uj1 UJZ

/ fapy o T"e9dm — / fgi)jdm‘
Ut U]?

+

/2 f(¢j — w20 Tnes"g)dm‘-
U:
J
(3.5.7)
We bound the first term in equation (3.5.7) using the strong unstable norm. We have
that |Gy o G(_]%‘Cl < Oy, for some Cy; > 0 due to the fact that each curve U} has
i i
uniformly bounded curvature and slopes bounded away from infinity. Thus |¢;|ca U?) S
J
CCg‘wl‘Ca(Wl)‘esng’Ca(Wl). 1\/IOI'€OVGI'7 d(?/)l OTnGS"g, ¢]) = ‘¢1 OTnesngOGU1 —¢jOGU2’ =
J J
0 by definition of ¢;. To complete the bound on the first term, we need the following

estimate from [DZ11, Lemma 4.2]: There exists C' > 0, independent of W' and W2, such
that

dys(U},U?) < CA™"né =gy, Vj. (3.5.8)
Then we apply the definition of the strong unstable norm with €; instead of £. Thus,

>

<28, CCYlloger] I flla D 1€ cocay,
AEMp

/ fq/)loT"eS”gdm—/ fojdm
U; Uz?

(3.5.9)
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where we used Lemmas 3.3.10 and 3.3.1(b) with v = 0 since there is at most one matched
piece U jl corresponding to each component Wil € ggO(Wl) of T~"W1.
It remains to estimate the second term using the strong stable norm.

|, £(85 =i o TS ) dm| < (111 1og [UF1]716; =2 0 T 12y
i
In order to estimate this last C®-norm, we use that |GUJ_2 |cr < Cy and |G[;j%|01 < .

(65 = 12 0 T"e59 iz < Cl(r 0 T"e59) 0 G — (16 0 T"e59) 0 a1
< C|(hroT" 0 Gy — thg 0 T™ 0 Gpy2) (€9 0 Gy )
J J J
+ (20 T" 0 Gpy2) (€79 0 Gy — €579 0 G2 | s
J J J
SOl 0T 0 Gy = 20T 0 G2l s 1) |€S"g\CO(Uj1)
+ C|¢2|00(Uj2) €59 o GU} — o GU]?|05(Ij)-
(3.5.10)
It follows from [DZ11, Lemma 4.4] that
10T 0 Gy — 2 0 T 0 G2 |z, < C2*7P.
J J
Now, we need to estimate |59 0 G'y1 — €579 0 G2 los(1,)- Since d(TH Gy (r), TG 2(r)) <
J J J J
CA—(=9z for all r € I; and 0 <@ < n, we get

Sng(GU]l (r) - eSng(Gsz (T))—Sng(GUJl (r)

|
< 21€59| co(1)|Sng (G2 (1) = Sug(Grn ()] (3.5.11)
J J J

€99 0 G (1) = €59 0 Gy (1) = e
A% ol S
< 20— gloma (C2) €59 o)

We estimate the -Holder constant in two ways. First, using (3.5.11) twice, we have for all
r, s € I; that

€579 0 Gy (1) = €59 0 Gy (1) = €549 0 Gy (5) + €579 0 Gipa(5)] < O |65,
On the other hand, using that GUf (r) and GUJe (s) lie on the same stable curve,
6579 0 G (1) = €9 0 G (r) — €59 0 Gy (5) 4+ €5°9 0 Gy ()|
< le¥9 o GUJ.l (r) —e9 o GUJ.l () + €59 o Gsz(S) — eI o GU]g ()]
<1579 |y (1) (Gt (1), Gy (5))%2 + 16579y (G (), G (5))°
< C’@Sng‘co(Ujl)h' — 8|,

Thus, this quantity is bounded by the min of the two estimates. This min is maximal
when the two upperbounds are equal, that is when &€ = C|r — s|. Therefore, the g-Holder
constant satisfies

B Sn S”"« > - S”
Hlj(e 90 GUjl — e’ o Gsz) < e 6\6 g’cO(Ujl)
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We therefore have proved that
|59 o Gyr = 5 o GUJ.Z|CB(IJ-) < 05a9_5|€s"g|CO(Uj1)-
Combining the above estimates inside (3.5.10), we finally have
[¢j — b2 0 Tnes"g|c/B(Uj2) < Céa_ﬁ\GS"”cO(Ujl)’

Summing over j yields

>

/2 F(; — 2 0 T"e"9)dm| < Cllog do| || f]1s6* 205" D" €| cocay,
U; AeMp

where we used Lemma 3.3.1(b) with v = 0 since there is at most one matched piece U jl
corresponding to each component W} € G (W') of T™"W'. Since 8§ < 1 is fixed, this
completes the estimate on the second term of the matched pieces (originating from (3.5.6)).

We now turn to the estimate of the first sum in (3.5.6) concerning the unmatched
pieces.

We say an unmatched curve V! is created at time j, 1 < j < n, if j is the first time
that T"~JV.! is not part of a matched element of g;?o (W1). Indeed, there may be several
curves V;! (in principle exponentially many in n — j) such that 7"~7V.! belongs to the
same unmatched element of Q?O(Wl). Define

Ajp = {i| V;! is created at time j
and T 7V;! belongs to the unmatched curve W}' ¢ T=9W1}.

Due to the uniform hyperbolicity of T', and, again, uniform transversality of S_,, with the
stable cone and of C*(x) with C¥(x), we have [W}}| < CA Ve,

Recall that from Lemma 3.3.1(a) for 4 = 0, if for a certain time ¢, every element of
QgO(Wkl) have length less than dy/3 — that is, if ggo (Wl = IgO(WkI) — then we have the
subexponential growth

ST €% goqyy < 2(Km + 1)/t (3.5.12)
Veg (W)

We would like to establish a lower bound on the value of ¢ as a function of j.
More precisely, we want to find ¢(j), as large as possible, so that
1 0
(2) |gqgj)(|w|,g ) = Ity (Wi);
IOg VIi|I= 5o 1
This is the content of the next two lemmas.
Lemma 3.5.4. If W € W* is such that C2|W[>""°° < §0/3 for some k > 1, where C
is the constant from (3.3.2). Then g,fg;o(W) = IgOnO(W), and for all 1 <1 < k, and all
W; € G (W), |Wy| < C2 W |20,

Ing

Proof. We prove the lemma by induction on k. We start with the case k = 1. Let 1 <1 < ng
and W; € G®(W). Denote V = T'W; € W. Then, for all 0 < j < I, [T9W;| < &.
Decomposing T~V = W; as in the beginning of the proof of Lemma 3.3.1, we get that
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[W;| < C|W|?"°* which is less than dy/3 by assumption. Thus, ng(W) = Sléo(W) for
each 0 < I < ng. Therefore G (W) = G20 (W), with the claimed estimate.
Consider now the case k > 1. Notice that, by construction, we have

G W)= U G,

W;eg0 L")

Thus, we can apply the same method to estimate the length of an element W; € g,mo +Z(W)
from the length of its parent in Q,mo( ), iterating the estimates in the same fashion as for
(3.3.2). O

Lemma 3.5.5. The above conditions (a) and (b) are satisfied for q(j) = %(%2”) -1,

for all j > j1, where j1 > jo = 0 are constants (uniform in & and Wk) For j < j1, set
q(j) = 0.

Proof. Since |W}l| < CEA™7 and using Lemma 3.5.5, the condition (a) will be satisfied
whenever C2(CEA=7)2""° < 6y/3.

Let jo be such that CA=% < 1. Then (a) is satisfied whenever C?A~0—10)27% < §4/3,
that is

loafi — 4 . log 362
<loel=do) o in o, = og =5 % (3.5.13)

S0 log 2 S0 log 2 log A
Note that Cy is uniform, and that the right-hand-side of (3.5.13) is larger than ¢(j) for all

j large enough, say j > j1.
Using the estimate from Lemma 3.5.5, condition (b) is satisfied whenever | log C?(CEA~7)% |7 >
|log £|¢. Now, we have that

N ol - ) 1 .
|log C*(CEA)2"| = |log C* 4+ 277 log(CEA )| > 512 "log(CEA7)],
whenever

g+1< 1g(§‘]102) + C3, with C3 = ” l})g2 log li)oggé’é
Note that C3 is uniform, and that the right-hand-side of (3.5.14) is larger than ¢(j) for all
j large enough, say j > ji (up to increasing the value of ji).
We thus have to prove that |log CEA=7|Y > 2(¢t1D7|1og £|¢ (which implies (b)). Notice
that, from the definition of ¢(j), we have 2(40)+D7 < (j — j4)¥~¢. We distinguish two cases.
Assume first that (j — jo) log A > logé. Therefore

< (5 — Jo) | log&|* < (4 — jo)”(log A)* < ((j — jo) log A)?
< ((j — jo)log A + [log &[ 4 [log CA~7°[)7
<
<

(3.5.14)

20017 Jog 2]¢

| — (j — jo) log A + log & + log CA™7°|?
|log CEA™I|.
On the other hand, if (j — jo) log A < logé, then

o |logep~¢
(log A)7=

((7 — jo) log A + |log &| + | log CA™|)7
|-

|

20017 10g ¢ < (5 — jo)Y "¢ log &[¢ < ]logf:\< |log |7

(j — jo)log A +log & + log CA™ 7|

<
<
< |log CEA™I .
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Thus, the choice ¢(j) satisfies (a) and (b) for all j > j;. O

15

We next estimate *° over the unmatched pieces Vl in (3.5.6), using the strong stable

norm. Since cases [ = 1 and [ = 2 are similar here, we only deal with the case [ = 1.

=22 2

j=1 k i€A;,

10 T"eS"gdi1
1

/7“71ij1 (ﬁgijf)wl o Tjesjg

(o~ 3=90) fYapy o TIHID) Si+a(i)9

l

n
NI
= el

(W)

<> Z |£2=3790) £|,C| Log [VA]| ™V [tb1 © TIHID) | 10 [€%5+90)9 | i
ko viegh (wi

—_

.

a(J)

< s Z (I aDETD loge| ¢y~ DT || cay

k
Vlegq(ﬂ)(wkl)

||f|| Z n—j—q(5)) P«( ’9)\log5| ¢ Z Z |eSjgoT‘1(j>+Sq(j)gycﬁ(Vl)

Jj=1 WICT JWlV}EQq(])(Wl)

<5 HfH 26” JaiPT9) | log g~ Z_ ooy Do 150 e
o Wect=w! Vieg,0, (W)

g Hf” Zen I=a)P(T.9) | 10g &|~¢ ?eJP*(Tg)eq( SR, 4 1)90)/m
Jj=1 0

¢ a0 (Km+1)
< 1 C nPy(T,g) q(7)(P«(T,9) supgf—log Km+1
gl log ™ e

Now, for & > 0, fixed, since we assume that P, (7T, g) —sup g > sglog2, we can chose m large
enough and ¢ small enough such that e, :== P,(T, g)—sup g— = log(Km—l—l)—ﬁso log2 > 0.
By definition of ¢(j), we obtain that

n ) n. _(y=¢log(i—j
Z S_Q(])(P*(Tvg)_supg_%IOg(Km+1)) — Z e vsq log 2 0(€1+

J=n J=n J=n
is bounded. The bound (3.5.3) then follows by combining all the above estimates into
(3.5.6) and taking the appropriate suprema. O

Remark 3.5.6. In the case g = —hiop(¢1)7, the assumption Py (T, g) —supg > sglog2
in Proposition 3.5.1 is implied by the condition Atop(¢1)Tmin > Solog2, which is itself
implied by TminPpusps (T')/psre(T) > solog2 thanks to the Abramov formula. This latter
condition appears to be satisfied for billiards studied by Baras and Gaspard [GB95] and by
Garrido [Gar97], as long as Ty, is not too small.

Indeed, Garrido [Gar97] studied the Sinai billiard corresponding to the periodic Lorentz
gas with two scatterers of radius R < R’ on the unit square lattice (Figure 3.1(b)). Setting
R' = 0.4, Garrido computed hq; (T) and psgs(7) for about 20 values of R ranging from
R = 0.1 (when the horizon becomes infinite) to R = @ — 0.4 (when the scatterers touch:

15. For the 4*® and 6" inequalities, we use Proposition 3.3.8. Here again, P (T, g) can be replaced by
P.(T,g) + € up to a larger multiplicative constant.

n _
Les0 log 2) _ Z (] _ jo)flf#loggzel
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©C00
OCOHO
o000

(a)

Figure 3.1 — (a) The Sinai billiard on a triangular lattice studied in [GB95] with angle 7/3,
scatterer of radius 1, and distance d between the centers of adjacent scatterers. (b) The Sinai
billiard on a square lattice with scatterers of radius R < R’ studied in [Gar97]. The boundary
of a single cell is indicated by dashed lines in both tables.

Tmin = 0). According to [BD20, § 2.4], in those examples we can always find ¢ and ng
such that sy < % Furthermore, Ty, = @ — 0.4 — R. Now, for R =0.1", we find that

TominPpss (T)/ pisms (7) = (%2 — 0.5)51 > 0.7 > Llog2 > s log 2,

ot

and for R = 0.2, we find that
Tonin s (T) /s (7) = (42 — 0.6) 14 > 0.48 > Llog2 > splog 2.

Since for R € (0.1, 0.2], R + Tmin(R) is a linear function, and according to Garrido Figures 6
and 8, R — pspp(7)(R) is well approximated by an affine function and R +— hygp (T)(R)
is lower bounded by an affine function joining the values at R = 0.1 and 0.2, it appears
that the condition Tiinhugrs (T)/1sre(T) > solog 2 is satisfied for all R € (0.1, 0.2].

Baras and Gaspard studied the Sinai billiard corresponding to the Lorentz gas with disks
of radius 1 centered in a triangular lattice (Figure 3.1(a)). The distance d between points
on the lattice is varied from d = 2 (when the scatterers touch: Ty = 0) to d = 4/v/3
(when the horizon becomes infinite). We have that 7, = d — 2 and, still according
to [BD20, § 2.4], in those examples we can always find ¢¢ and ng such that sy < % The
computed values are the average Lyapunov exponent of the billiard flows given in [GB95],
provide a lower bound directly on hyg,,(T)/psre(7). For d = 0.2, we find

TminPpsng (T)/ tsrs (T) = (% —2)1.8 > 0.55 > 11log2 > sglog 2.

The condition Atop(P1)Tmin > Solog2 is a little bit more restrictive than the one used
by Baladi and Demers in [BD20] since, by the Abramov formula, hy, = hiop(¢1)ps(7) =
htop(®1)Tmin.  (Also, we do not know any example of billiard for which the condition
hy > solog2 is not satisfied.)

We now turn to the condition SSP.1. Unfortunately, we don’t know any billiard table
such that the potential g = —hiop(¢1)7 satisfies a simple condition implying SSP.1. By
stmple, we mean a sufficient condition that does not involve topological entropies, since
they are notoriously hard to estimate numerically. First, recall from Lemmas 3.3.2 and
3.3.3 that log A > hiop(é1)(Tmax — Tmin) implies SSP.1. Remark that since g and %Sng are
cohomologous, they would give rise to the same equilibrium states. It is then advantageous to
work with the Birkhoff average instead of g because max %S’ng < Tmax and min %Sng = Tmin
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(notice that 7y, is achieved on an orbit of period 2). Now, taking advantage of the
Abramov formula and of the variational principle, we get that max %Sng < 2Tmin implies
s > hiop(¢1)(max £S,g — Tmin) (recall that b, > log A is the topological entropy of T, as
defined in [BD20]). The condition max %Sng < 2Tmin involves quantity that are easy to
estimate numerically, however, we don’t know any billiard table satisfying this condition.

We now deduce the bounds of Theorem 3.5.3 from the rate of growth of stable curves
proved in Proposition 3.3.5.

Proof of Theorem 3.5.3. To prove this lower bound on |L}1],, recall the choice of 61 > 0
from Lemma 3.3.2 for e = 1/4. Let w € W?* with |W| > 01/3 and set the test function
¥ =1. For n > nq,

0 0
/W E;lemw = 25 / ie Idmwy, > 25 51‘}[1/56 9> ?C 25 sv?/f)e 9,
Wiegnl (W) Wiegnl (W) Wiegnl (W)
where we used Lemma 3.2.3 for the second inequality, since for each W; € G31(W) there
exists A € M such that W; C A and

sup eSnd < sup eSnd < Cigf eSn9 < C'inf 59,
W; A 4

7

We can now use Proposition 3.3.5 to get

0 - 5

/W Loldmy > %co Z |€Snlg|CO(A) > %coenp*(T’g). (3.5.15)
AeMO
Thus

Lo|s = |£0 ]y > ﬁ nPx(T.g)

Hg\S/!g!w/zCoe .
Letting n tend to infinity, one obtains lim HE"lHl/n > ePx(T9), O

n—oo "9 1B

3.6 The measure

This section is devoted to the construction, the properties and the uniqueness of an
equilibrium state p, for T', associated to a potential g.

We will assume throughout that g is a (M}, ag)-Holder potential such that P.(T,g) —
sup g > sglog2 and that the conditions SSP.1 and SSP.2 are satisfied.

3.6.1 Construction of the measure ;;;, — Measure of Singular Sets

In this section, we construct a T-invariant probability measure i, on M by combining in
(3.6.1) a maximal eigenvector of £, on B and a maximal eigenvector of its dual, obtained
in Proposition 3.6.1. In addition, the information on these left and right eigenvectors will
give Lemma 3.6.2 and Corollary 3.6.3, which imply that p, is T-adapted.

We first show that such maximal eigenvectors exist and are in fact nonnegative Radon
measures — that is, elements of the dual of CO(M).

Proposition 3.6.1. If g is a (M, a,)-Hélder continuous potential such that P.(T, g) —
supg > solog2 and log A > supg — inf g, then there exist v € B, and v € B}, such
that Lyv = eP(T9y and Lo = ePT9 5 In addition, v and U take nonnegative values

on nonnegative C' functions on M and are thus nonnegative Radon measures. Finally,

v(v) #0 and ||v||, < C.
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It is easy to see that [folw < [plc1]flw (use [pP]caw) < |@let|¥]cawy). Clearly, if
feCtand ¢ € C! then fp € C'. Therefore, if P.(T,g) —supg > solog2 and all three

SSP condition are satisfied, a bounded linear map p, from C1(M) to C can be defined by
taking v and ¥ from Proposition 3.6.1 and setting

_ p(ev)
1g(p) = O (3.6.1)

This map is nonnegative for all nonnegative ¢ and thus defines a nonnegative measure
g € (CO(M))*, with py(1) = 1. Clearly, ug is a T invariant probability measure since for
every ¢ € C! we have

(pv) = e TDo(oLy(v)) = e HTI0(Ly((p 0 T)v)) = 7((p 0 T)v) = H(v)ug(wo T).

Proof. Let 1 denote the constant function equal to 1 on M. We will take this as a
seed in our construction of a maximal eigenvector. By Theorem 3.5.3, we see that
1£21|B > [|£31]|s > |£01]y = CemP*(T'9) . Now consider

1 n—1
Uy = = Z e*kP*(T’g)Elg“l, n>1. (3.6.2)

=0

By construction, the v, are nonnegative, and thus Radon measures. By Proposition 3.5.1,
they satisfy v, < C, so using the relative compactness of B in B, ( [BD20, Proposition 6.1]),
we extract a subsequence (n;) such that lim; v,; = v is a nonnegative Radon measure, and
the convergence is in B,,. Since L, is continuous on B,,, we may write,

n;—1

Loy = lim — Z e_kp*(T’g)El;Hl
j—o0 nj =0

P ] —kP.(T,g) pk L p(r L (n;~1)P.(T\g) p1i
— lim E:e “(Tog) pky = oPu(Ti9) 4 = o(n=1)Pu( 79)£gﬂl
jooo My =0 g n; ng
— €P*(T7g)y’

where we used that the second and third terms go to 0 (in the B-norm). We thus obtain a
nonnegative measure v € B, such that L,v = eP=Ta)y,

Although v is not a priori an element of B, it does inherit bounds on the unstable norm
from the sequence v,,. The convergence of (v,;) to v in B,, implies that

lim sup  sup </ I/I/)dmw—/ anwdmw) =0
w w

J—0 Wews YEC™ (W)
[Ylce w

Since ||y, ||. < C, it follows that |[v]|, < C, as claimed.

Next, recalling the bound | [ fdpusps| < C|f]w from [BD20, Proposition 4.2], setting
dpsrs € (Byw)* to be the functional defined on C'(M) C By, by dusrs(f) = | fdpsrs and
extended by density, we define

1 n—1
Dy = E Z e—kP*(T,g)(EZ)k(dMSRB). (363)
k=0
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Then, we have |, (f)| < C|f|w for all n and all f € By,. So v, is bounded in (B,)* C B*.
By compactness of the embedding ( [BD20, Proposition 6.1]), we can find a subsequence
Up; converging to v € B*. By the argument above, we have Lir = eP=(T9)p,

We next check that 7, which in principle lies in the dual of B, is in fact an element of
(By)*. For this, it suffices to find C' < oo so that for any f € B we have

7(f) < C|fw- (3.6.4)

Now, for f € B and any n; > 1, we have

(N < |N@ny = YO+ 170y (D] < [(ny = D) (D] A+ [ o

Since o,; — 7 in B*, we conclude |7(f)| < [f]w for all f € B. Since B is dense in By,
by [RS80, Thm I1.7] 7 extends uniquely to a bounded linear functional on B,, satisfying
(3.6.4). It only remains to prove that o(v) > 0.

Let (n;) (resp. (7)) denote the subsequence such that v = lim; v,; (resp. 7 = lim; ;).
Since 7 is continuous on B,,, we have on the one hand

n;j—1 n;j—1

1% 17
p(v) = lim #(v,,) = lim — Y e *T9525) = lim — Y (1) = o(1
P(w) = Jim o) = lim - k}_:() P(Ly1) = Jim - k; p(1) = (1),

where we have used that 7 is an eigenvector of £3. On the other hand,

n;—1 fii—1

17 1Y
(1) = lim — —kPu(T.g) ( p*\k D=k ka*(T,g)/ k1 .
7(1) jl ; kgzo e (L) dpsrs( )—jlm ; ,;ZO e L1 dpsge

Next, we disintegrate duggp as in the proof of [BD20, Lemma 4.4] into conditional measure
:U’EI/EB on maximal homogeneous stable manifolds W, € Wi} and a factor measure dfisgs(§)
on the index set = of stable manifolds. Recall that H?r/;gB = |W§|_1p§dmw, where p¢ is
uniformly log-Hélder continuous so that

0<e¢c, < 1nf mfpé sup ]pg]ca(wg) < Cp < 0.
Ee=

Let =% denote those ¢ € = such that |[W¢| > 01/3 and note that figgs(Z°) > 0. Then,
disintegrating as usual, we get by (3.5.15) for k > nq,

/'C]_;ldIU'SRB = /’/W »C]gclpdwﬁrldegdﬂsr{B(g)
= 3

—1 3 2¢ ) _
= /—51 W El;]‘de£cp3(sl ldMSRB(é) > Cp 30 k;P*( 79) SRB(_:,(Sl) > 0.
= 3
Thus 7(v) = (1) > Cﬂzgoﬂsma( 1) > 0 as required. .

Lemma 3.6.2. For any v > 0 such that 257 < eP+(T:9)=sw9 ond any k € 7 there exists
Cy > 0 such that

pg(Nz(Sk)) < Cilloge|™7, Ve > 0. (3.6.5)

In particular, for any p > 1/v (one can choose p < 1 for~y >1), n >0, and k € Z, for
tg-almost every x € M, there exists C' > 0 such that

d(T"z, Si) = Ce™ ™ Vn > 0. (3.6.6)
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Proof. First, for each k > 0, we claim that there exists Cx > 0 such that for all £ > 0,
V(S| < Cllievhe < Clloge| . (3.6.7)

The proof of the first inequality in (3.6.7) is formally the same as in the proof of [BD20,
Lemma 7.3].

We now prove the second inequality in (3.6.7). Let W € W* and ¢ € C*(W) with
9| (wy < 1. Due to the uniform transversality of curves in S_j with the stable cone, the
1ntersect10n W NN-(S_k) can be expressed as a finite union with cardinality bounded by a
constant Ay (depending only on S_j) of stable manifolds W; € W#, of lengths at most Ce.
Therefore, for any f € C*(M),

Jy ety =32 [ o dm < S 1Slullenqu) < CAul Sl

It follows that |1y, - f|w < Ag|f|w for all f € B,,. Similarly, we have |1y, o f|w < Agl|f]|s]| loge| ™Y
for all f € B. Now, recalling v,,, we estimate,

‘1k,EV’w < |1k,5(7/ - Vn)|w + Hk,a’/n‘w < Ak|l/ - Vn’w + C']2;| log&?’_,yHVnHB'

Since ||v,||p < C for all n > 1, we take the limit as n — oo to conclude that |1y vy, <
Ck|loge|™7, concluding the proof of (3.6.7).
Next, applying (3.6.4), we have

(V) g(N=(S_k)) = (1 ev) < Clp vy < CCk|loge|™  VEk > 0.

To obtain the analogous bound for N:(Sy), for k > 0, we use the invariance of 4. It
follows from [CMO06, Exercice 4.50] that T'(Nz(S1)) C Nge/2(S—1). Thus,

Hg(N=(S1)) < ptg(Nr2(S-1)) < Cillog Ce2177 < O loge| 7.

The estimate for N(Sy), for k > 2, follows similarly since T*S;, = S_y.
Finally, fix n > 0, k € Z and p > 1/v. Since

Z Mg —nnP Sk)) < éCkn_’y Z n_]w < OO, (368)

n=0 n>1

by the Borel-Cantelli Lemma, pg,-almost every z € M visits N,—,n» (Sg) only finitely many
times, and the last part of the lemma follows. O

Corollary 3.6.3. a) For any~ > 0 so that P,(T, g)—sup g > vso log 2 and any C! curve
S uniformly transverse to the stable cone, there exists C' > 0 such that v(N:(S)) <
Clloge|™ and pg(Nz(S)) < Clloge|™" for all e > 0.

b) The measures v and g have no atoms, and pg(W) =0 for all W € W?® and W € W".
¢) The measure g is adapted: [ |logd(z,S+1)|dpg < .
d) pg-almost every point in M has a stable and unstable manifold of positive length.

Proof. The proof is identical to the one of [BD20, Corollary 7.4], where p, should be
replace by fig. O
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3.6.2 rv-Almost Everywhere Positive Length of Unstable Manifolds

In this section, we establish almost everywhere positive length of unstable manifolds in the
sense of the measure v — the maximal eigenvector of £, in B,,, extended into a measure
since it is nonnegative distribution. To do so, we will view elements of B,, as leafwise
measure (Definition 3.6.4). Indeed, in Lemma 3.6.6, we make a connection between the
disintegration of v as a measure, and the family of leafwise measures on the set of stable
manifolds W.

Definition 3.6.4 (Leafwise distribustion and leafwise measure). For f € C'(M) and
W € W?, the map defined on C*(W) by

v [ o dm,

can be viewed as a distribution of order o on W. Since | [y, fo dmw | < |f|w|¥|comw), we
can extend the map sending f € C*(M) to this distribution of order a, to f € By,. We
denote this extension by [, fidmw or [y, ¥ f, and we call the corresponding family of
distributions (f, W)wews the leafwise distribution associated to f € By,.

Note that if [y, foodmw > 0 for all ¢ > 0, then the leafwise distribution on W can be
extended into a bounded linear functional on C°(W), or in other words, a Radon measure.
If this holds for all W € W?, the leafwise distribution is called a leafwise measure.

Lemma 3.6.5 (Almost Everywhere Positive Length of Unstable Manifolds, for v). For
v-almost every x € M the stable and unstable manifolds have positive length. Moreover,
viewing v as a leafwise measure, for every W € W?, v-almost every x € W has an unstable
manifold of positive length.

Lemma 3.6.6. Let "¢ and 0 denote the conditional measures and factor measure obtained
by disintegrating v on the set of homogeneous stable manifolds We € Wiy, £ € E. Then for
any ¥ € C*(M),

1%
’l)Z)d]/Wg _ fWg 17/}10&
We W, PEV

VE € Z, and di(€) = [We| ! < /. pgu> Asnn(E).
3

Moreover, viewed as a leafwise measure, v(W) > 0 for all W € W*.

Proof. First, we establish the following claim: For W € W?, we let ny < Ca|log(|W|/6)]
be the constant from the proof of Corollary 3.3.4 (This is the first time [ such that gfl (W)
has at least one element of length at least §1/3.) Then there exists C > 0 such that for all
W e W,

/ v > CW|(P-(T:9)~supg)Cz (3.6.9)
w
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Indeed, recalling (3.6.2) and using Theorem 3.5.3, we have for C = %5%7(P*(T’g)7infg)cz,

1 n;—1
/ v =lim — Z e_kP*(T’g)/ LF1 dmyy
W g nj i w7
1 n;—1
>lim — Y e Mo {7 29 LE7m2 1 dmy,

n;g n; W,
g o
k=ng WiEQ% (W) '

1 n;—1 . 61
> lim — e_kp*(T79)en2 infg Y1

i My hmmo 20
> %606—112(& (T.g)=infg) > 6|W|(P* (T,9)—supg)C2

This proves the last statement of the lemma.

Next, for any f € C1(M), according to our convention, we view f as an element of B,
by considering it as a measure integrated against pggs. Now let (an ); be the sequence of
functions defined by (3.6.2) such that |v,; — |, — 0. For any ¢ € C*(M), we have

g () = [ v dmsn = [ [ v, uipe dimur [ Wel ! dsn(©
= 3

i fWE Vn]-¢/7£ deg d R ) (5)
E fWg Vn; pe dmy, pane i

where d(fisgp)n; (§) = |W§|_1 fwg Vn,; pe dmyy, diisrs(§). By definition of convergences in B,
since ¥, pe € C*(W¢), the ratio of integrals converges (uniformly in &) to fW& Ypev/ fwg pev,
and the factor measure converges to |[W¢|™! st pe dv dfisrs(§). Note that since pg is
uniformly log-Holder, and due to (3.6.9), we have st pev > 0 with lower bound depending
only on the length of We. Finally, by [BD20, Proposition 4.2] and [BD20, Lemma 4.4], we
have vy, (1) converging to v(v). Disintegrating v according the statement of the lemma
yields to the claimed identifications. O

Proof of Lemma 3.6.5. The statement about stable manifolds of positive length follows
from the characterization of 7 in Lemma 3.6.6, since the set of points with stable manifolds
of zero length has zero [isgs-measure [CMO6].
We fix W € W? and prove the statement about v as a leafwise measure. This will
imply the statement regarding unstable manifolds for the measure v by Lemma 3.6.6.
Fix € > 0 and A € (1,A), and define O = Uyp>10,,, where

Op={zeW|n=min{j>1|d,(T72,8) <cC.A}},

and d,, denotes distance restricted to the unstable cone. By [CMO06, Lemma 4.67], any
x € W ~ O has an unstable manifold of length at least 2. We now estimate v(0) =
> n>1Y(0On), where equality holds since the O,, are disjoint. Since each O,, is a finite union
of open subcurves of W, we have

i—1
1"
lo,v=lim | lo,vn, = lim — > e’fP*(Tag)/ Lo, £i1dmy. (3.6.10)
w J—o0 JW J—00 nj k=0 w

We give estimates in two cases.
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Case I: k < n. Write [yno Elg“l dmwy = ZWeg‘SO(W) Jw.nr-+o, eI dmyy, .
H k

If x € T7%0,, then y = T ""*z satisfies du(y,S1) < ECGA_” and thus we have
dy(Ty,S_1) < Ce/2A="/2, Due to the uniform transversality of stable and unstable cones,
as well as the fact that elements of S_; are uniformly transverse to the stable cone, we
have d4(Ty,S-1) < Cel/2A="/2 as well, with possibly a larger constant C.

Let r® ;(x) denote the distance from T~/ to the nearest endpoint of W*(T~/x), where
W#(T~Ix) is the maximal local stable manifold containing 7~7z. From the above analysis,
we see that W; N T—%0,, C {x €¢ W; : 7% kg1 (@) < 051/2]\*”/2}. The time reversal of the
growth lemma [CMO06, Thm 5.52] gives mw;, (r®,, . (z) < Cell2A=1/2) < C'el/2A—n/2
for a constant C’ that is uniform in n and k. Thus, using Theorem 3.3.8, we find

[ chidmy <CEERTE ST (e < CHP T 2R,
WnNO, s
W;€G,0 (W)

Case II: k > n. Using the same observation as in Case I, if z € T7"*10,,, then x satisfies
ds(z,S5-1) < Cel/2A="/2. We change variables to estimate the integral precisely at time
—n + 1, and then use Theorem 3.5.3 and Proposition 3.3.8,

/ L5 dmy = Z / eSn71g£/;—n+11 dm,
WnOn, 5 w,nT-"+10,
ergno_l(W)

< X
W€ (W
S og[Win (rf < Ce2RAT2) 719 o g 1L
W,e620 (W)
< Z ’log(csl/Qf\_"/Q)\_VC'\eS"’lg|CO(Wi)€(k_”+1)P*(T’g) < | log(Cgl/QA_”/Z)|_"’C’ekp*(T’9) '
Wieg’0 (W)

/ . eS"”gE]g“_”Hl dmw,
) WiN(rs<Cel/2A-n/2)

N

Using the estimates of Cases I and II in (3.6.10) and using the weaker bound, we see that,
/ 1o, vn; < C| log(Ce'/2A="/2)|77
w

Summing over n, we have, [y, 1o v, < C'|log e[1=7, uniformly in j. Since Vn, converges
to v in the weak norm, this bound carries over to v. Since € > 0 was arbitrary and v > 1,
this implies v(O) = 0, completing the proof of the lemma. O

3.6.3 Absolute Continuity of i, — Full Support

In this subsection, we will assume that v > 1, which is possible since P, (T, g) —supg >
50log 2. In the next subsection, we prove that p, is Bernoulli. This proof relies on showing
first that u4 is K-mixing. As a first step, we will prove that 14 is ergodic, using a Hopf-type
argument. This will require the absolute continuity of the stable and the unstable foliations
for pg, which will be deduce from SSP.2 and the following absolute continuity for v:

Proposition 3.6.7. Let R be a Cantor rectangle. Fiz W° € W*(R) and for W € W*(R),
let Oy denote the holonomy map from W° N R to W N R along unstable manifolds in
WY(R). Then for any (M3}, ay)-Hélder potential with P,(T, g)—sup g > solog2 and having
SSP.1, Ow is absolutely continuous with respect to the leafwise measure v.
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Proof. Since by Lemma 3.6.5 unstable manifolds comprise a set of full v-measure, it suffices
to fix a set £ C WON R with v-measure zero, and prove that the v-measure of Oy (E) C W
is also zero.

Since v is a regular measure on W9, for € > 0, there exists an open set O, ¢ W0,
O: D E, such that v(O.) < . Indeed, since W is compact, we may choose O. to be a
finite union of intervals. Let 1. be a smooth function which is 1 on O, and 0 outside of an
e-neighbourhood of O.. We may choose 9. so that [;;0 1. v < 2¢.

Using (3.5.4), we choose n = n(e) such that [tp: o T"|c1(p-npoy < 1 and A™" < e.
Following the procedure described in the proof of the estimate on the unstable norm
in Proposition 3.5.1, we subdivide 7-"W?" and T~"W into matched pieces UJO, U; and
unmatched pieces V;O, V;. With this construction, none of the unmatched pieces T "Vio
intersect an unstable manifold in W*(R) since unstable manifolds are not cut under 7-".

Indeed, on matched pieces, we may choose a foliation I'; = {%}IeUJQ such that:

i) T"T; contains all unstable manifolds in W"(R) that intersect T "UJQ ;

ii) between unstable manifolds in I'; N T~ (W"(R)), we interpolate via unstable curves;

iii) the resulting holonomy ©; from 7"U ]Q to T™U; has uniformly bounded Jacobian '°
with respect to arc-length, with bound depending on the unstable diameter of D(R),
by [BDL18, Lemmas 6.6, 6.8];

iv) pushing forward I'; to 7"I'; in D(R), we interpolate in the gaps using unstable
curves; call T' the resulting foliation of D(R);

v) the associated holonomy map Oy extends Oy and has uniformly bounded Jacobian,
again by [BDL18, Lemmas 6.6 and 6.8].

Using the map Oy, we define ¢, = 1. o @a}, and note that MZ€|01(W) < Clve|or woys
where we write C''(W) for the set of Lipschitz functions on W, i.e., C® with a = 1.

Next, we modify . and 125 as follows: We set them equal to 0 on the images of
unmatched pieces, T ”V;O and T"V;, respectively. Since these curves do not intersect
unstable manifolds in W¥(R), we still have 1. =1 on F and Y. =1on Ow (E). Moreover,
the set of points on which ¥, > 0 (resp. 125 > 0) is a finite union of open intervals that
cover E (resp. Ow (E)).

Since [0 e v < 2¢, in order to estimate [}, 126 v, we estimate the following difference,
using matched pieces

/ Ve v — / TZE v= e—nP*(T,g) (/ e LM — / 1;6 ﬁny)
wo w wo w
_ ,—nP:(T,g) / Lo T Sng _/ . _|_/ L ~E ™ oSng
e zj: U]Qw oT™e v Uj¢]7/ Uj(@ YeoT" e v,
(3.6.11)

where ¢j = (e o T" en9) o Gpoo G(}jl, and Go and Gy, represent the functions defining
J J

U]Q and Uj, respectively, defined as in (3.5.5). Next, since d(¢. o T" 65“9,¢j) = 0 by

construction, and using (3.5.8) and the assumption that A™" < e, we have by (3.5.9),

%:/[J?¢EOTnV_/le¢jV

16. Indeed, [BDL18] shows the Jacobian is Hélder continuous, but we shall not need this here.

o~ P:(T.9) < Clloge|™*||vlw - (3.6.12)
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It remains to estimate the last term in (3.6.11). This we do using the weak norm,

/U.(¢j — P o T e v < |¢j — Y- 0 T €5 oy, |V - (3.6.13)

J

By (3.5.10), we have
6 — T o T €|y < Cl( 0 T €59) 0 Gy — (3 0 T™ ¢5+9) 0 Gy ooy

where I; is the common r-interval on which G0 an Gy, are defined.
J
Fix r € I, and let x = Gpo(r) € U; and = Gy, (r). Since UJQ and U; are matched,
J
there exists y € U]O and an unstable curve vy, € I'; such that v, N U; = Z. By definition of
e, we have 1;8 oT™(Z) = 1. o T™(y). Thus,
|(the 0 T" %) 0 Gyo(r) — (the 0 T™ %) 0 Gy, (7))
J

[ 0 T" () — e o T(2)[[€59)| + oo 0 T ()| €91 — £5n917)]
(Ie o T™(@) = the 0 T"(y)| + [ 0 T"(y) — o 0 T™(Z)])"*PI + [€9(") — £5n(®)|
(Ws o Tnlcl(UJQ)d(x’ y) + |g’C’°‘9 ] (C€)Qg>€nsupg

< (CA—n + Csag)ensupg < C(8+6ag)ensupg’

NN

«

N

where we have used the fact that d(x,y) < CA™" due to the uniform transversality of stable
and unstable curves. We also used the fact that, by definition, the vertical segment -,
connecting x to Z is such that |T"y,| < Ce. Since each T%y, lies in the extended unstable
cone, for all 0 < i < n, we get that d(T%(x), T%(z)) < CA~(™ e, hence the bound

|e5n9(@) _ 9n9(@)| L |9n9(@)| . |1 — InI(@)=Sn9(@)| L 26" I| G 0(T) — Spg(w)|
A
A% —1

nsup g

N

(Ce)?lglcase

where we used that |1 — e*| < 2|x| when z is near 0.
Now given r, s € I, we have on the one hand,

|(pe 0T eSng) °© GUJQ (r) — (7;6 o™ eSng) oGy, (r) = (Ye o T" eSng> ° GUJQ(S) + (1;5 oT" eSng) o G, (s)]
< 206&671 sup g ,

while on the other hand,

(s 0 T" €509) 0 Giyo(r) — (B 0 T" €579) 0 Gy (r) — (1 0 T €549) 0 Gipa(5) + (e 0 T" €549) o G 5)
(e 0 T €59) 0 Gua (1) — (e 0 T" 579) 0 Gyo(s) — (F 0 T" €549) 0 Gl (1) — (P 0 T €579) 0 Gy (5))
< [Weloo oyl 9] cas d(Guo(r), Guo(s)* + e 0 T" |1 woyd(Go (r), Gyo(s)) €59 o

+ [Geloom 59| coad(Guo (r), Guo(s))* + [t © T"|cr w) d(Go (r), Gy (5))|e™ 9| co
< (Clr —s| + C'|r — s|*9)e™ P9 L Clr — s|*9e™ P9I |

where we have used Lemma 3.3.10 and the fact that G[;(l) and G[}],l have bounded derivatives
since the stable cone is bounded away from the Verticzjﬂ.

The difference between evaluation at r and s is bounded by the minimum of these
two expressions. This is greatest when the two are equal, i.e., when |r — s| = Ce. Thus
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H((1pe 0 T"e579) 0 Gpyo — (1:/;5 o T"e5n9) o Gy,;) < Ce®™ %P9 and so |¢; — Pe ©
J

™ eS"9|Ca(Uj) < Ce®™*e"PY. Putting this estimate together with (3.6.12) and (3.6.13)

in (3.6.11), we conclude,

’/Wowev—/w{l;av

Now since [jy0 ¢ v < 2¢, we have

< Clloge| ™ ||[vlu + Ce®s = |p],e M Px(T9)=supg) (3.6.14)

/ Yev < C'loge| ™, (3.6.15)
w

where C’ depends on v. Since {/;8 =1 on O (E) and 1;5 > 0 on an open set containing
Ow (F) for every € > 0, we have v(Ow (F)) = 0, as required. O

Corollary 3.6.8 (Absolute Continuity of p, with Respect to Unstable Foliations). Let
R be a Cantor rectangle with py(R) > 0. Fizx W° € W*(R) and for W € W5(R), let Ow
denote the holonomy map from WO N R to W N R along unstable manifolds in W*(R).
Then Oy is absolutely continuous with respect to the measure fig.

In order to deduce the corollary from the Proposition 3.6.7, we introduce the set M,
as in [BD20], of regular points and a countable cover of this set by Cantor rectangles. The
set M8 is defined by

M™8 = {z € M | d(z,dW(z)) > 0, d(z,dW"(z)) > 0}.

At each 2 € M™8, we can apply [CMO06, Prop 7.81] and construct a closed locally maximal
Cantor rectangle R, containing x, which is the direct product of local stable and unstable
manifolds. Furthermore, by trimming the sides, we may arrange it so that %diamS(RI) <
diam"(R;) < 2diam®(R;).

Lemma 3.6.9 (Countable Cover of M™® by Cantor Rectangle). There exists a countable
set {xj}jen C M™®, such that U;R,, = M™® and each R; = R, satisfies (3.3.17).

Proof. This lemma is exactly the content of [BD20, Lemma 7.10]. O

Let {R; | j € N} be the family of Cantor rectangles constructed in Lemma 3.6.9,
discarding the ones with zero pg-measure. Then pg(U;R;) = pg(M™8) = 1, by Corol-
lary 3.6.3(d). In the rest of the paper, we shall work with this countable collection of
rectangles.

Given a Cantor rectangle R, define W*(R) to be the set of stable manifolds that
completely cross D(R), and similarly for W*(R).

Proof of Corollary 3.6.8. In order to prove absolute continuity of the unstable foliation
with respect to ug, we will show that the conditional measures MI;V of p4 are equivalent to
v on pig-almost every W € W*(R).

Fix a Cantor rectangle R satisfying (3.3.17) with p,(R) > 0, and W as in the statement
of the corollary. Let E C W R satisfy v(E) = 0, for the leafwise measure v.

For any W € W?*(R), we have the holonomy map Oy : WYN R — W N R as in the
proof of Proposition 3.6.7. For € > 0, we approximate F, choose n and construct a foliation
T of the solid rectangle D(R) as before. Define 1. and use the foliation T to define ). on
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D(R). We have ¢, = 1 on E = Uycp7a, where 7, is the element of T containing z. We
extend 1. to M by setting it equal to 0 on M \ D(R).

It follows from the proof of Proposition 3.6.7, in particular (3.6.15), that ngu € By,
and [.v|, < C'|loge|~S. Now,

nj—1

5(0) g (Be) = P(der) = lim — 3 e FPC (L5 A (o)

—>oon] k=0

e (3.6.16)

— lim — 3 e P (£ (D)

N
joonjko

For each k, using the disintegration of pggrp as in the proof of Lemma 3.6.6 with the same
notation as there, we estimate,

psns (C5(0e0)) = [ [ L) pe dmure [Wel ™ dsna(©)
= 3

<O [ VLSl Wl dnn(€)
< Ok Ty, < CFPT9)|loge| ¢,

where we have used (3.5.1) in the last line. Thus ug(@bg) C|loge|™*, for each € > 0, so
that p,(E) = 0.

Disintegrating p, into conditional measures ,ng/VE on W € W?* and a factor measure
dfig(€) on the index set = of stable manifolds in W*(R), it follows that uZVg (E) =0 for
fig-almost every { € Eg. Since E was arbitrary, the conditional measures of ;1; on W*(R)
are absolutely continuous with respect to the leafwise measure v.

To show that in fact /LEV is equivalent to v, suppose now that £ C W has v(E) > 0. For
any ¢ > 0 such that C’|loge|™ < v(E)/2, where C’ is from (3.6.15), choose 9. € C*(W?)
such that v(|¢). — 1g|) < €, where 1f is the indicator function of the set E. As above, we
extend 1. to a function v, on D(R) via the foliation T', and then to M by setting e =0
on M\ D(R).

We have ¢.v € B,, and by (3.6.14)

V(e 1) = v(he 1yyo) — C'|loge| ¢, for all W € W*(R) . (3.6.17)

Now following (3.6.16) and disintegrating psgrp as usual, we obtain,

~ 1 n—1 N .
g(Pe) = lim — S ek (T) ﬁ /W LE(ev) pe dm, dfisns (€)
k=0 =W
(3.6.18)

1S 4p (T -
— 13 _ - * »g) k Skg »
= hrILn - 5_0 e Eé we, e pe o T e v | dfisrs(§) -

We,i€G,' (We)

[1]

To estimate this last expression, we estimate the thermodynamic sum over the curves W ;
which properly cross the rectangle R.

By SSP.2 and the choice of d; in (3.3.8), there exists kg, depending only on the minimum
length of W € W#(R), such that

> Mooy =3 X ™ ooary,  forallk > k.
WieL) (We) WieG! (We)

Wl
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By choice of our covering {R;} from Lemma 3.6.9, all W¢ ; € Lzl (We) properly cross
one of finitely many R;. By the topological mixing property of T', there exists ng, depending
only on the length scale 1, such that some smooth component of T~"°W¢ ; properly crosses
R. Thus, letting C,(W¢) denote those W¢; € Q,‘zl(Wg) which properly cross R, we have

S ng inf S
> Mooy = X > €€ coq )
Wi €Chtng (We) We i €LI (We) WG, (We i) NChng (We)
> &0 inf g Z |eSkg|CO(W§,i)
8
Wgﬂ'ELkl (Wg)
1 : 1 :
> geno inf g Z |€Skg‘CO(W§7i) > §C€n0 inf g ekP* (T,9) 7

§
Wmegkl (We)

for all k£ > kg, where ¢ > 0 depends on ¢y from Proposition 3.3.5 as well as the minimum
length of W € W*(R).
Using this lower bound on the sum together with (3.6.17) yields,

pg(the) = gee ™9 (u(3h.) — C'|loge| ) = C"(v(E) — |loge| ™).

Taking ¢ — 0, we have u,(E) > C"v(E), and so ,ugV(E) > 0 for almost every W €
W3(R). O

Proposition 3.6.10 (Full Support). We have pq(O) > 0 for any open set O.

Proof. The proof is the same as the one of [BD20, Proposition 7.11], replacing i, by pg. O

3.6.4 Bernoulli property of i, and Variational Principle

In this section, we use the absolute continuity results on the holonomy map from Sec-
tion 3.6.3 to establish that 14 is K-mixing. We also prove an upper bound on the p4-measure
of weighted dynamical Bowen balls. Using these estimates, we are able to prove that p,
is an equilibrium state for 7" under the potential g — that is, i, realizes the sup in the
definition of P(T, g) — and p, satisfies the variational principle: Py (T, g) = P(T,g). Finally,
using again the absolute continuity along side with Cantor rectangles and the bound (3.6.5)
on the neighbourhoods of the singular sets, we can bootstrap from the K-mixing to prove
that p4 is Bernoulli.

Lemma 3.6.11 (Single Ergodic Component). If R is a Cantor rectangle with pgs(R) > 0,
then the set of stable manifolds W*(R) belongs to a single ergodic component of fig.

Proof. Replacing ji, by pg, the proof of the analogous result [BD20, Lemma 7.15] can be
applied verbatim. The proof there follows the Hopf strategy. O

Proposition 3.6.12. For all (M}, a,)-Hdlder potential g such that P.(T,g) —supg >
s0log2 and having SSP.1 and SSP.2, (T, j14) is K-mizing.

Proof. Replacing i, by pig, the proof of the analogous result [BD20, Proposition 7.16] can
be applied verbatim. We outline the steps of the proof.

First, Baladi and Demers show that (7™, u) is ergodic for all n > 1. To do so, they
use the topological mixing of T" to prove that any two Cantor rectangle belong to the same
ergodic component of T".
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Then, they prove that T' is K-mixing. To do so, they construct a measurable partition
out of the stable and unstable manifolds, that is finer than the Pinsker partition 7 (7).
Using the covering of M*8 by Cantor rectangles {R;}, and the absolute continuity of the
holonony map, they prove that each R; belongs to a single component of 7(7"). From this,
they deduce that 7(7T") contains finitely many elements on which 7" acts by permutation.
Since m(T") is T-invariant and (77, p) is ergodic for all n > 1, 7(T") must be trivial. O

Proposition 3.6.13 (Upper Bounds on Weighted Dynamical Balls). Assume that Py(T, g)—
sup g > sglog 2 and that SSP.1 holds. There exists A < oo such that for all e > 0 sufficiently
small, x € M, and n > 1, the measure gy constructed in (3.6.1) satisfies

-1
ug(e*S" g]an(LE)) < Ae—P(To9)

Proof. The inequality follows from the beginning of the proof of [BD20, Proposition 7.12],
where ji,, £ and h, should be replaced by respectively pg4, L, and Py (T, g). ]

Corollary 3.6.14. For all (M}, ay)-Hélder potential g such that Pi(T, g)—sup g > solog 2
and having SSP.1 and SSP.2, the measure pi4 is an equilibrium state of T' under the potential
g: we have Py(T,g) = hy,(T) + [ gdpg.

Proof. For all x € M, let P (x) denotes the element of P containing x. By the Shannon—
MacMillan—Breiman theorem, we have

1 n
—nlbngoﬁlogug(ﬂ) () = hu, (P, T) = hy,(T) for pg-a.e. v € M,

where the last equality follows from the Kolmogorov—Sinai theorem (because T is expan-
sive [BD20, Lemma 3.4]). Furthermore, since by Proposition 3.6.12 4 is ergodic, then
St

%log e~ >n 9 converges to —ugy(g) as n goes to infinity. Thus

n—oo n

1 -
— lim —log(e_snlg(r)ug(Pg(x)D = hy, (T) +/gd,ug for pg-a.e. x € M. (3.6.19)

Now, by Lemma 3.2.3, there exists a constant C' such that for all z € M and all y, z € Pj(z),
we have |S, 1g(y) — S, tg(2)| < C. Thus

o g (€5 I pp ) e

€ X 571 X
e Su 90 g (P (z))

-t . o n —s;t
and so we can replace e 9@) o (PR (z)) in (3.6.19) by pg (e g:ﬂ.'pg(x)).
Now, we want to replace Pj(z) with a dynamical ball and use Proposition 3.6.13. To
do so, recall that for all € < g¢, the dynamical ball B, (z,¢) is included in a single element

of Mg, which is itself included in at most C' elements of Py, for some C independent of x.
Thus,

1 -
— lim inf — log 14 (e_snlgILBn(Lg)) < hy, (T) + /gd,ug,

n—oo n

On the other hand, for € small enough, we get by Proposition 3.6.13,

o] —s-1
— lim inf Elog g (e n 9 Ian<x,g)) > P(T, g).

Combining these last two inequalities, we get h,,,(T) + [ gdug = Pi(T, g), which ends the
proof. O
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Proposition 3.6.15. Under the assumptions of Proposition 3.6.12, (T, jug) is Bernoulli.

Proof. The proof follows the arguments in Section 5 and 6 in [CH96], relying on the
notion vwB partition introduced by Ornstein in [Orn70]. Actually, we can apply the same
modifications as in the proof of the analogous result [BD20, Proposition 7.19], replacing .
by 4. O

3.6.5 Uniqueness of the equilibrium state

This subsection is devoted to the uniqueness of the equilibrium state p4 (Proposition 3.6.18).
The proof relies on exploiting the fact that while the lower bound on weighted Bowen
balls (or thermodynamic sum over elements of MY ) cannot be improved for y,-almost
every x, yet if one fixes n, most elements of M?, (in the sense of thermodynamic sums)
should either have unstable diameter of a fixed length, or have previously been contained
in an element of M(ij with this property, for some j < n (Lemma 3.6.16). Such elements
collectively satisfy stronger lower bounds on their measure, when weighted accordingly
(Lemma 3.6.17). Since we have establish good control of the sums over M°, and M2 in
Section 3.3, we will work with these partitions instead of Bowen balls.

Recalling (4.2.2), choose m; large enough so that (Kmy + 1)1/™ < e1(P(T9)=supyg)
Now, choose 2 > 0 sufficiently small that for all n, k € N, if A € M* is such that

max{diam“(A), diam®(A)} < 09,

then A \ S4,,, consists of at most Km; + 1 connected components.
For n > 1, define

BY,, ={AeM’, |VO<j<n/2,

T7ACEe M(lnﬂ» such that diam“(FE) < da},

and its time reversal

B = {Ae M3 |VO<j<n/2,
TIACEc ./\/lg_j such that diam®(F) < d2}.

Next, set By, = {A € MY, | either A € B%, or T™2"A € B2"}. Define Gy, =
M92n AN Bgn.

Or first lemma shows that the thermodynamic sum over elements of By, is small
relative to the one over elements of M",, , for large n. Let ny > 2m; be chosen so that for

all A e MY, diam®(A4) < CA™™ < § for all n > ny.

Lemma 3.6.16. There exists C' > 0 such that for all n > nq,

—1 3 1 n_ 7 1
Z |€SQ"QICO(A) < CegnP*(T,g)egnsupg(Kml + 1)m1+1 < Ceinbx(Tig)+gnsupg

A€Bay,

Notice that since Py (T, g) — supg > 0, we have that EP*(T, g)+ isupg < 2P.(T,g).
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Proof. Let n > n; and A € B%,, ¢ M%, . For all 0 < j < [n/2], call 4; €
M%Sn /21— the unique element containing 7-"/2J4J A. By definition of B, , we have
that diam"(A4;) < 2, meanwhile diam®(A;) < 2 by choice of n;.

By choice of d2, we have that Ay is the union of at most K'mj + 1 elements of TFSn /2]
Thus the number of connected components of 7" Ay is at most Km, + 1. Notice that
this fact not only applies to Ag, but also to A, ..., Apny, Ajpj2), where [n/2] = Imy + 1,
0 < ¢ < mq. Thus, we get

#{A € B | T2 A ¢ Ag) < (Kmy + 1) < (Kmy + 1)m1
We are now able to estimate the thermodynamic sum over B, :

S ooy = Y S ey =Y

—1 n/2 —1
STanyn 99T 248019

AeB®, ApeM® (3m/2] AeBo,. Ay A’
T—Ln/2] A’c A
—1 —1

<3 eSran/219 3 I

m C0(40) T co(A)

1 n_ —1
< e WPI(my 1) Y S
Ao C°(Ao)

< CeinP-(Tg)+insupg.

Now, notice that B3" is the time reversal of BY,, , thus

7 -1 1 7 1
Z \es2ng|CO(A) < Cei™x (T g)tgnsupg _ crpgnbs(Tog)+gnsupg
AeBg"

Hence
St _ S TP, T, +1nsu
Z ’6 2ng|CO(T*2"A) = Z ‘6 2”g|CO(A) < Cet (T9)+5 Py,
AeBzn AeBZn

Finally, we get
S (559 ona) < 2CeEn P T gnsun
AEBQn
O

Next, the following lemma establishes the importance of long pieces in providing good
lower bounds on the measure of weighted elements of the partition.

Lemma 3.6.17. There exists Cs, > 0 such that for all j > 1 and all A € /Vl(lj such that
diam®(A) = 6y and diam®(T—7 A) > 63, we have

—1 .
/,Lg(eisj gﬂA) 2 Cé.ge_]P*(Tag) .

Proof. Let Ry,..., Ry be Cantor rectangles such that p4(R;) > 0 for all 1 < i < k, and
such that any unstable or stable curve of length more than o crosses at least one of them.
Note Rs, = {R1, ..., Ri} this family.

Let j > 0 and A € M?; such that diam"(A) > d; and diam®(T7A) > b,. By choice
of Rs,, A crosses some rectangle R; and 1777 A also crosses some rectangle Ry. Note Z;
the index set for the family of stable manifolds W¢ of R;. For § € E;, let We 4 = W N A.

CO(AY)
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Since T—7 A properly crosses Ry in the stable direction, and that 77 is smooth on A, it
follows that 77 We 4 is a single curve containing a stable manifold of R;.

Let l5, denote the length of the smallest stable manifold among the one in the family
of Cantor rectangles Rs,. Thus, for all £ € =;

= —j —j ~1Ca(Pu(T,g)—
/ e 5% 9y — ¢ .]P*(Tug)/ v>e ]P*(T,g)Clg;z( (T.g) supg)‘
We,a T=IWe, A

Finally, let D(R;) be the smallest solid rectangle containing R;. Since ,u,gV and v are
equivalent on pg-a.e. W € W?*, we get

—1

g1 _S- We, —§-1 ~
o™ 900) 2 g™ apr) = [ g (e L) Ay €)

_e—1

P C’/:.V(e S; g]lAnwg)dﬂg(g) > C(’bﬂg(ai)e—jP*(T’g)‘

Since the family Rs, is finite, this proves the lemma. O

Proposition 3.6.18. If g is a (M{, ag)-Hélder potential with P.(T,g) —supg > solog2,
having SSP.1 and SSP.2, then the measure pig is the unique equilibrium state for T under
the potential g.

Proof. Usually, given a known equilibrium state (thus ergodic) pg, in order to prove
uniqueness it suffices to check that for all T-invariant measure p singular with respect to
tg, we have h,(T) + p(g) < by, (T) + pg(g) — see for example [KH95, Section 20.3]. This
is the strategy we adopt.

Let p be a T-invariant Borel probability measure, singular with respect to p4, that is
there exists a Borel set ' C M with T7'F = F and yu,(F) = 0 but u(F) = 1.

For each n € N, we consider the partition @, of maximal connected components
of M on which T~" is continuous. By [BD20, Lemma 3.2 and 3.3], Q, is MY, plus
isolated points whose cardinality grows at most linearly with n. Thus G, C Qs, for
each n. Define By, = Qo,, ~ Ga,. The set By, contains Ba, plus isolated points, and so
its associated thermodynamic sum is bounded by the expression in Lemma 3.6.16 plus
#{isolated points}e?"suPY. Since P,(T,g) —supg > 0, we have that %P*(T, g) + isupg >
2sup g, and thus the contribution of isolated points is small compared with the one of Ba,.

By uniform hyperbolicity of T', the diameters of the elements of T1"/21Q, tend to zero
as n goes to infinity. This implies the following fact.

Sublemma 3.6.19. For each n > ni, there exists a finite union C, of elements of Qy
such that
lim (p+4 pg)(FATI2C,)=0.

n—-+o0o

Proof. The proof is essentially the same as [BD20, Sublemma 7.24] where the role of
i« is played by pg. Since notations are introduced in this proof, we write it down for
completeness and latter use.

Let i = p+ pg and Q, = T~"21Q,. For § > 0, by regularity of Radon measures, pick
compact sets K1 C F and Ko C M ~ F such that max{u(F \ K1), i((M N F) N\ Ka)} < 4.
Since K; and Ky are disjoint and compact, we have n = n; = d(Ki,K) > 0. If
diam(Q) < 1/2, then either Q N K; = ) or Q N Ky = . Let ng be large enough so that
the diameter of Oy is smaller than ns/2 for all k > ns. Fix n = 2ns and set C, to be
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the union of Q € Q,, such that Q N K # 0. By construction, K; C C, and C, N Ko = 0.
Hence i(F AC,) < 6+ (K1 ACy) <0+ (M~ (K1 UKy)) < 30. Defining C,, = T"/2IC,
completes the proof. O

Remark that since T-'F = F, it follows that (1 + p4)(Cn, A F) also tends to zero as
n — 400.
Since Qy, is generating for 72", we have

hu(TQn) = hu(T%, Qan) < Q2n = Z w(Q) log u(Q) -
QEQQn

Thus,

2nPM(T,g) = thu(T) +2nu(g) = hu(TQn) + N(Sgnlg) < HM(QZTL) + M(Sgnlg)

> Q)= log (@) + Sa 9(xq) + Cy ),
QEQ2n

where zg € @ and Cy is the constant from Lemma 3.2.3.

Now, we want to distinguish elements of Qs,. From the proof of Sublemma 3.6.19,
for each n, there exists a compact set Kj(n) that defines C, = T~"/2l¢,, and satisfying
(1 + pg)(UnKi(n)) = (4 pg)(F). We group elements @ € Qa, C Q,, according to whether
T-"Q c C, or T""QNC, = 0. This dichotomy is well defined because if Q is not an
isolated point, and if T-"Q N C,, # 0, then T™"Q € M?™, is contained in an element of
/\/an/ | that intersect K 1(n). Thus Q c T"C, = TI™/?IC, - the case where Q is an

[n/2]
isolated point is obvious. Therefore,

2nP,(T, g)
<G+ Y mQ(-logm@) +S5iazq)) Y w@)(—logn(Q) + S5 9(xq))
QcT"Cp QEQan\T"Cy,
2 ~ — ~ _
<Cy+ - + u(T"Cy) 10g( Z ) eSing(‘BQ)) +pu(M NT™Cy) log( Z ) esznlg(?ﬁQ))
QCT"Cy, QEQan,\T"Cy,

where we used in the last line that the convexity of xlogx implies that for all p; > 0 with
Z;V 10 <1, and all a; € R, we have (see [KH95, (20.3.5)])

—

N
Z i(—logp; + aj) < E+ijlogzeaz
j=1

Then, since —2nP,, = (M(Tnégn) + pu(M ~ T”(fzn))e*Z”P*(T’g), we write for n > ny
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2n(Py(T,g) — Py, (T, g)) — % -y

< M(T_nén) log ( Z eS;:Q(CEQ)—2nP* (T,g)) + M(M ~ T—nén> log ( Z eS;nlg(zQ)—QnP* (T,g))
QCT"Cn QEQ2\T"Cr

<uColog| 5o 9(2Q)=2nPu(T,9) | 3 ¢San 9(2Q)—2nPy(T'9)

QCT"Cy QcT"Cp
QGGQW, QEB%'L
+ w(M N\ Cap) 10g( Z ¢S2m 9(2Q)—2nP.(T\g) | Z oSam 9(@q)—2nP. (T,g))
QEG2,~\T"Ch, QEBop~\T"Ch

(3.6.20)

where we used that Qs, = Ga, U Bay,. By Lemma 3.6.16 (and the remark concerning
the contribution of isolated points), both sums over elements of B, are bounded by
Ce— i (P«(T\g)—supg)

It remains to estimate both sums over elements of Gg,. To do so, we want use
Lemma 3.6.17, that is for each Q € Ga,, we want to assign a set F satisfying the assumptions
of the lemma. Let Q € Ga,,. Thus Q ¢ BY,,, and so there exists 0 < j < |n/2] such that
T71Q C Ej € Mgnﬂ with diam"(E;) > d2. Also, since T72"Q ¢ B3", there exists 0 < k <
|n/2] such that T-2"*t*Q c Ej, € M2 with diam®(E}y) > 9. Thus, both Ej, € M2"~*
and T—2"H+rE; € szgj*k contain T~2"*tkQ. In particular, there exists E € Mgnijfk
containing both Ej, and T_2”+j+kEj. Let E =T?"7-FE ¢ MQ2n+j+k. Notice that by
construction E; C E and Ey C T2"*FE, therefore E satisfies diam“(E) > d, and
diam® (T 2"+ E) > §,, the assumption from Lemma 3.6.17. Thus,

pg(€Sm—-k91 ) > Oy, e~ Cni=HP-(T'9)

We call (E, j, k) an admissible triple for Q € G, if 0 < j, k < [n/2] and E € ./\/l(l2n+j+k,
with T777Q € E and min{diam"(E), diam*(T~?"*/**E)} > §5. By the above construction,
such admissible triples always exist, but there may be many associated to a given QQ € Goy,.
However, we can define the unique mazimal triple for () by taking first the maximum j,
and then the maximum k over all admissible triples for Q.

Let &, be the set of maximal triples obtained in this way from elements of Go,. For
(E,j, k) € En, let Apr(E, j, k) denote the set of Q € Ga, for which the maximal triple is
(E,j, k). The importance of the set &, lies in [BD20, Sublemma 7.25], which we state,
and prove, as follows for completeness.

Sublemma 3.6.20. Suppose that (El,jl, kz), (Eg,jz, k‘g) € Eop with jo = j1 and (El,jl, k‘Q) %+
(Eg,jz, k‘g) Then T*(]’2*j1)E1 N EQ = 0.

Proof. By contradiction, let (E1,j1,k2), (EQ,jQ,kg) € &y with jo > 71, (El,jl,kg) #*
(_Ez,jg,kg) and T—U2=0)E, N Fy # (0. Notice that T-G2-)E, € M]f;njjrngrkl while
EQ E M—27’L+j2+k2' A A B

Consider first the case k1 < ko. Therefore T~2=7)E; ¢ Fy. In particular, any element
Q € Ay (Ey, j1, k1) satisfies T772Q C Es, and so Q € A (FEs, jo, ko), a contradiction.
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Consider now the case k1 > ky. Therefore T-(2=7) E; and F5 are both contained in
an element F’ € M92n+j2+k1. Since Ey C E’, we have that diam“(E’) > d,. Also, since
T-nththp ¢ T-2tith B we have that diam®(T—2"72Tk ) > §5. Note that if
Q € Anr(Er, g1, k1) U Apr(Es, g2, ko), then (E', jo, k1) is an admissible triple for Q. Thus,
if j; = jo, then E' = E1. For Q € Ap(E», j2, k2), then Q C Fy and so (Ey,j1,k;) is an
admissible triple for @, which contradicts the maximality of (E2,j2, k) since ky > ko.
Similarly, if jo > j1, then for Q € Ap(Ey, j1, k1), the triple (E', jo, k1) is admissible for @Q,
which contradicts the maximality of (E1, ji, k1). O

We now prove that if 7"C, N Ay (E, j, k) # 0, then Ay (E,j,k) € T"C, and E C
T"7C,. Let Q € Ay (E, j, k) be such that Q N T"C,, # . Then, by definition of (E, j, k),
T—"QCcT "E¢ Mﬁ;ﬂrk Since 0 < j,k < [n/2], there exists E' € ML_nL/f/sz such that
T-"HE C E'. In particular, we have E' € Q,, and E' NC,, # 0. Thus, by construction
of C,, we have C, D E' D T-""E > T~"Q. In particular, we get Q C T"C,, and thus
Am(E,j,k) C T"C,,. We also get E C T"IC,,.

On the other hand, we prove that if 7"C, N Ay (E, j, k) = 0, then Ay (E, j, k) € M ~
T"C, and T-"HE € M ~\.C,. Let Q € Ay (E, j, k). Then, by assumption, T-"QNC, = 0.
As above, there exists B/ € /\/lL_nL/n2 /J2 | containing both T-"Q and T~/ E. In particular,
E' € @, and E'NC, = 0. By construction of C,, we get that E' € M ~ C,. Thus
Qe M~T"C,, and so Ay(E,j, k) C M ~T"C,. Also, T"""E Cc M~ C,.

The only last step we have to do before estimating the sums over Ga, is to prove that
for each (E, 7, k) € &, we have

1 . . S71 .
Z_ ‘eszngbo(Q) < CC(‘]+k)P (T7g)‘6 Qn*J*kg‘CO(E) (3621)
QE-AM(Evjvk)

where C' > 0 is a constant depending only on the potential g. To do so, notice that if
Q € Ay (E, j, k), then by construction, T—7Q C E. Thus T~"Q € M",, is a subset of
T-=IE € M7, Decomposing T™"Q = Q_ N Q4 with Q_ € M°, and Q, € My,
and T-(")E = E_NE, with E_ € /\/l[ln_HC and F, € My ™7, we see that Q_ C E_ and
@+ C E4. Thus

S—l S*l n S;l Sn
Yoo g = D € oy < DL D 1€ I g gy

QEAM(E,5,k) QEAM(E,j,k) Q-eM®  QreMy
Q_CcE_ Q+CE4

St S go
< D e Yooy Do 1€ ooy

Q_eM® Q+eMy
Q_CE_ Q+CEy
Sy tgoTn =k SpgoToT = (n=1)
D T i P
Q-eM, QreM?
Q_CE_ Q+CEy

Now, notice that T-"t*Q_ € M"* is a subset of T""**E_ € Mp~*. Thus T-"++Q_
must be of the form Q_ NT~"T*E_ for some Q_ € Mgk. Similarly, 7" Q. must be of
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the form Q. NT" JE, for some Q4 € ./\/lé. Thus

51 S tgorn—Fk S, goToT—(n—3)
Z_ |e”2n g‘CO(Q) < Z |eon 9° ‘CO(Q70T77L+I@E7) Z |engeTe |C’0(Q~+QT"*J'E+)
QEAN(E,jk) Q_eM, QreMl

e Sor i wg—Sy L, SjgoT st
g Z ’e k g‘CO(Q,)ye 2n7]—kg nfjg‘co(Tn_jE_) Z ’6 390 ’CO(Q+)’6 nijg‘CO(Tn_jE_)'_)'
Q—GMO_k Q+€M%
Now, using Lemma 3.2.3, the supermultiplicativity from Lemma 3.3.7 and the exact
exponential growth from Proposition 3.3.8, we get the upper bound (3.6.21) with C' =
9 Cg esupg—infg.

We can now estimates the sums over elements of Ga,.

Z es;nlg(zQ)fznP*(T,g) < Z Z eS;nlg(xQ)onP*(T,g)
QeCan (Ejk)EEan QEAN (B, k)
QCT"Cn EcTn—an
—(2n—j—k)Pu(T,9)| ,Som i 19 B
< Z C@ (2n—j ) ( g)|€2 Jk:|CO(E)
(Evjvk)e‘c;Qn
EcTn—iC,
—1 _Sinl—'— g ~ anl_._ g ~
<D CCH ug(e i) e iMoo
(Ev]vk)eg%n
EcT"—i¢,
-1 = 1 CntiE
SCCL'Cy > py(E)<CClCy Y. pg(T"HE)
(B.jk)€E2n (E.j.k)EEan
EcTm—ié, EcTn=ic,

< ' Hg (én)

where C' = CCj' Cy.

Similarly,
—1 —1
Z ¢San 9(@Q)=2nP(T,g) Z Z ¢S2n 9(2Q)—2nPu(T,g)
QEG2n\Tnén _(Evjvk)652ﬁ~ QGAM(E7J7k)
ECM~\T"IC,,
—(2n—j—k)Pu(T\9) | Son— 10 B
7(E)j)k)€52n

ECM~T"iC,

-1 -5t g ST g B

<X CC mgle k) €% oy
7(E7j7k)682n~
ECM~\T"ICy

<005—2109 > ug(E)gcq;;Cg > g (T E)
(Evjvk)€£2n (Eaj7k)€£2n
EcCM~T"=9C, EcCM~T"=9C,

<’ pg(M ~ én)

Putting these bounds together allows us to complete our estimate of (3.6.20),

2
2(P,(T.9) = Py (T.9)) = - = Cy < ulCa) 10g(C'p1g(Cp) + Ceman P Lo)msmwa))

+ u(M . Cp) log(C’ug(M N Cp) + Ce_i"(P*(T,Q)—SUPg)).

Since p(Cy,) tends to 1 as n — +oo, while p4(Cy,) tends to 0 as n — 400, the limit of the
right-hand side tends to —oo. This yields a contradiction unless P,(T,g) < P,,(T,g). O
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3.7 The Billiard Flow

Throughout this section, we see the billiard flow ¢; as the vertical flow in the space
Q:{(:U,t)EMX]R|0<t<T(x)}/~,

where the equivalence relation is defined by (z,7(z)) ~ (T(x),0). In other words, we see
¢: as the suspension flow over 1" under the return time 7. Furthermore, transporting the
Euclidean metric on Q@ x $' onto , the flow ¢; is uniformly hyperbolic.

Proposition 3.7.1. Let g be a (M}, a,)-Hélder potential such that P.(T,g) —supg >
solog 2, with SSP.1 and SSP.2. Let jig = (ug(7)) L1y @ A\, where X is the Lebesque measure.
Then (¢, fig) is a K-system.

Proof. The ergodicity of (¢, jig) follows directly from the ergodicity of (7, p1y) proved in
Proposition 3.6.12.

To prove the K-mixing, we follow closely the method used in Sections 6.9, 6.10 and
6.11 from [CMO06]. In fact, replacing p and pgo with pg and fiy throughout these sections,
we only have to check that [CMO06, Exercise 6.35] is still true in order to apply verbatim
the arguments. This is what we prove here.

To do so, we first need to recall some of the construction done in [CMO06, Section 6.9].
If z; and x3 are two nearby points in M such that

{zo} =W (x) N W(x3) £ 0, {x4} =W(x1) N W (x3) £ 0, (3.7.1)

we then construct the 4-loop Y7, Ya, Y3, Yy, Y5 € Q as follow. Let Y1 = X7 = (z1,t) and
X3 = (x3,t). Define
Yo = W*(Y1) N Wi (X3), Y3 =W?(Y2) N Wie(X3),

loc loc

Yi= WH(Ys) NWEE(X1), Ys=W5(Yy) N WEY(Xy),

loc loc

where W* and W* are unstable and stable manifolds for the flow, and W»* and W23 are
local weak unstable and local weak stable manifolds for the flow. We always assume that this
construction stays under the ceiling function 7. Actually, as proven in [CM06, Lemma 6.40]
there exists o such that Y5 = ¢,(Y1), with |o] = psps(K) where K is the rectangle in M
with corners x1, xo, x3, 4. Thus the 4-loops are always open.

For x € M, let L, = {¢+(x) | 0 < ¢t < 7(x)}. Then the partition {L, | v € M}
of  is measurable and the conditional measures of fig on L, are uniform. Call A,
the Lebesgue probability measure on £,. Let D C Q be such that fiy(D) = 1 and let
Ey={x e M| (Ly ~ D) =0}. Clearly, puy(E1) = 1.

We call a point x1 € Eq rich if for any € > 0 there exists another point z3 € E7 such
that 0 < d(x1,23) < ¢ and (3.7.1) holds with z9 and x4 € Fy. Denote Ey C Ej the set of
rich points.

The analogous of [CMO06, Exercise 6.35] is to prove that p,(E2) = 1. Let {R;};>1 be
the cover of M*® into Cantor rectangles (discarding the ones with zero y1-measure). Let R
be one of those Cantor rectangle and denote upg the conditional measure of pgy on R. It is
enough to prove that pr(E2) = 1. Since py(E1) = 1 we have that pr(E;) = 1. Furthermore,
since the partition of R into stable manifolds is measurable, we can disintegrate pr with
respect to this partition, with conditional measure p% on W € RN W?. Tt follows that for
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pr-a.e. point x € By N R, if W = W(x) € W? contains x then 'V (W N E;) = 1. Similarly,
for pg-a.e. point z € By N R, if W = W(x) € W contains = then pV' (W N E;) = 1,
where 1YV is the conditional measure on W in the disintegration of up with respect to the
measurable partition RN W*" of R. Then ur(Fr) =1, where Er denotes the set of points
z in R such that both stable and unstable conditional measure on leaves containing x give
measure 1 to Fj.

Let Ef C FE5 be the set of rich points 1 such that z3 belongs to RN F; (and therefore
x9 and x4 also belong to RN Ep by the properties of a Cantor rectangle). By contradiction,
assume that pr(FL) # 1. Define the sets

CR={z;€ EyNR |3 >0,Ve3 € By NR, if 0 < d(z1,23) < € then 5 ¢ E; N R},
CR={z1€ EyNR |3 >0,Ve3 € By NR, if 0 < d(z;,23) < € then x4 ¢ E; N R}.

Note that we don’t have to introduction in these definitions the condition (3.7.1) since
it is automatically satisfied by the construction of Cantor rectangles. Thus, we have
(E1 N R) ~ EE = CEUCE, so that ur(CH U Cl) > 0. Assume first that ugr(CE) > 0.
Define the family of sets

Cfn:{xlecg“m}%}.

Since U,,»1 C3%,, = C3 is an increasing union, there is some n such that pr(C3,) > 0. Let
T € C’fn N Er and W € W* be such that 1 € W. Let x3 € E1 N RN ER be such that
0 <d(xg,23) < % Let Wy € WY be the unstable manifold containing x3. By construction
of Eg, we have ulV°(Wy N Ey) = 1, and since pl'® have support Wy (otherwise, p, would
not have total support because of the absolute continuity of the holonomy), in fact we have
that

MZVO(WO NELN B($1, %)) > 0.

Thus MH/(@W(WO NEN B(l’l, %))) > 0. Now, if 23 € Wy N E1 N B(l‘l, %), then Zo §7_f Fy.
In other words, Ey N Ow(Wy N By N B(x1,2)) = 0. Since z1 € Eg, we have that
wy (W N Ey) =1, so that p) (Ow(Wo N Ey N B(z1,+))) = 0, a contradiction. Thus
Ern C’fn = (), so that pur(C$) = 0. We proceed similarly, exchanging the role of W* and
WY, in order to prove that ug(CI) = 0. Finally, we get that ug(ELX) = 1, the contradiction
closing the proof. O

Proposition 3.7.2. Under the assumptions of Proposition 3.7.1, (¢, fig) is Bernoulli.

Proof. The idea of the proof is to bootstrap from the K-mixing following the techniques
of [CHI96] with modifications similar to those in [BD20, Proposition 7.19]. The proof
in [CH96] proceeds in two steps.

Step 1. Construction of d-reqular coverings. Given 6 > 0, the idea is to cover Q, up to a
set of fi;-measure at most 0, by small Cantor boxes — essentially a set of the form Cantor
rectangle times interval — such that i, restricted to each Cantor box is arbitrarily close to a
product measure. The basis of the boxes will be very similar to the covering {R;};en from
Lemma 3.6.9, however, some adjustments must be made in order to guarantee uniform
properties of the Jacobian of the relevant holonomy map.

Above a Cantor rectangle R with p4(R) > 0, we construct a Cantor box B following
the construction of P-sets from [OW73, Section 3]. Let W} and W5 be the stable sides
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of the smallest solid rectangle D(R) containing R. Let W be a stable manifold for ¢,
projecting on W7 through the map P_ : (z,t) € Q+— x € M if t < 7(x), and being such
that W C Qq == {(x,t) | 0 <t < 7(z)}. Consider the set Wz C W of points (x,t) € W
such that z € R. Let tg be small enough so that S = U?’ZO ¢+(Wgr) C Qo. Now, By is
obtained by moving S along the unstable manifolds of ¢; to another surface of that type,
spanned by Ws. That is, for each (z,t) € S, take the unstable manifold W (x,t) of ¢;
passing by (x,t), and projecting on the unstable manifold for 7" passing by x € R. Let
By = Uzpes W(z,t) and let B C By be the set of points (z,t) € By such that z € R.
Notice that, up to subdividing R into smaller rectangle taking a smaller ¢y, we can assume
that B C Q. Thus, by construction, the set B has the property that for all x,y € B, the
local unstable manifold of  and the local weakly stable manifold of y intersect each other
at a single point which lies in B. This is the crucial property of what Ornstein and Weiss,
in [OW73], called a rectangle.

Since pg(R) > 0, we have fiy(B) = toug(R) > 0, so that the conditional measure jip
of fig restricted to B makes sense. Now, we want to equip B with a product measure,
absolutely continuous with respect to ip. We proceed as follows. Since the partition of B
into unstable manifolds is measurable, we can disintegrate pp into conditional measures
e, on We N B with § € Zy, and a factor measure i on the set Zy parametrizing the
unstable manifolds of B. Fix a point z € B, and consider B as the product of W%(z) N B
with W*#(z) N B, where W*(z) is the local unstable manifold of z and W"*(z) is the

W*(2) @ 11, and note that we can view [ as

local weak stable manifold of z. Define pif, = i
inducing a measure on W™*(z). We still have to prove that i, << up.

Similarly, let ;1r be the conditional measure of 14 restricted to R. Since the partition into
unstable manifolds W, § € Z, is measurable, we can disintegrate pr into the conditional
measures £ on W N R and a factor measure /i on Z. We want to relate the disintegration
pp with the one of pgr. Notice that we can view Z, as the set Z x [0,%p], where Z
parametrize the set of unstable manifolds of R through the map associating £, € Zy
with the pair (§,t) where § € Z is such that P_(W,) = We C D(R) and t is the value
in the definition of S where W, and S intersect. Considering sets A C B of the form
A=P_(A)x[t_,ty], we get that

[ i) = st = [ un(panar= [ [ e ) ape)ar
A t_ Jeez

Thus, we can identified ' % with ,uP*(W%), and di with diidt. From this identifications,
we deduce that the projection map Py, from some W to P_(W), and its inverse are
absolutely continuous. The absolute continuity of the holonomy map Oy between unstable
manifolds Wy and W in B thus follows directly from the absolute continuity of the holonomy
map between unstable manifolds in R since Oy = PVT/}— o0p_(w)o Py,—. This implies that
ﬂ% is absolutely continuous with respect to fip, and thus, also with respect to fiy. The
following definition is taken from [CH96].

Definition 3.7.3. For § > 0, a d-regular covering of 2 is a finite collection of disjoint
Cantor boxzes B for which'",

a) ﬂg(UBe% B)>1-54.

17. The corresponding definition in [CH96] has a third condition, but it is satisfied in our setting since

the stable and unstable manifolds are one-dimensional and have bounded curvature.
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Fi(B)
fig(B)

%(ﬂf)—l’ < d forallz € Q.

b) Every B € B satisfies

- 1‘ < 0. Moreover, there ezists G C B, with fig(G) >

(1—-10)pg(B), such that

By [CH96, Lemma 5.1], such coverings exist for any § > 0, and for Cantor boxes
arbitrarily small. The proof essentially uses the covering of M™® from Lemma 3.6.9 to
build Cantor boxes, up to finite subdivision of the covering to ensure a). To get b),
subdivide the boxes into smaller ones on which the Jacobian of the holonomy map between
unstable manifolds is nearly 1. This argument relies on Lusin’s theorem and goes through
in our setting with no changes.

Step 2. Proof that &; is vwb. First, define @&; to be the partition of ) into sets of the

form Qo N (A x [%, l;l)), where A € M| and I € N. Then ap < @1 < ag < ... is such

that /32, V;2>° . ¢n@; generates the whole o-algebra on Q. Using Theorems 4.1 and 4.2

n=—oo

from [CH96], we only need to prove that each partition a; is vwB in order to prove that
(¢4, I1g) is Bernoulli.

Using M! as the basis elements of &; allows us to apply the bounds (3.6.5) directly
since OIM! | = S} US_1. We can now apply the same arguments as in [CH96, Section 6.2]
with the modifications described in the second part of the proof of [BD20, Proposition 7.19].
Actually, the only place where we need to be careful is [BD20, Eq. (7.33)] because of our
additional horizontal cuttings. We finish the proof by dealing with this equation. We first
have to recall some notations from [BD20] first.

Fix some i € N, and let @ = &;. Let £ > 0 and define § = ¢~ (/¢
v > 1), where C’ > 0 is the constant from (3.7.2) below.

Let B = {By, Ba, ..., B} be a é-regular cover of Q such that the diameter of the B;
are less than §. Define the partition 7 = {By, B1, Ba, ..., B}, where By = Q ~\ UF_ B;.
For each i > 1, let G; C B; denote the set identified in Definition 3.7.3(b). Since (¢—1, fig)
is K-mixing, there exists an even number N = 2m, such that for any integers Ny, Ni such
that N < Ny < Nip, d-almost every atom A of \/%é:m ¢_;au, satisfies

m

2/(1=7)

(recalling that

fig(B|A)

i (B)

<46, forall Bem,

where fi4(-|A) is the measure /i, conditioned to A. Now let m, Ny, Ny be given as above
and define w = \/%é:nml ¢_;a. Since the estimates on the fi,-measure of the bad sets 2
and F5 do not change, we skip them and define directly the set F3. Define F3 to be the
set of all points x € © \ By such that W#(x) intersects the boundary of the element w(x)
before it fully crosses the rectangle m(x). Thus, if z € Fj, there exists a subcurve of W?*(x)
connecting = to the boundary of (¢_;a)(x) for some i € [Ny — m, N; — m]. Then since
7(z) has diameter less than 8, ¢;(x) lies within a distance CA~%6 of the boundary of & —
where C; and A > 1 come from the hyperbolicity of the billiard flow. Using the bound

(3.6.5), the total measure of such points must add up to at most

Nl—m
C -~ o~ .
— 4 CaC1AT) | < CYllog | Y + €58 < C'|log 81T, (3.7.2
Z (’10g(CIA_16>‘,7 1 )) 1‘ 0og ’ 2 ‘ 0og ’ ( )

i=No—m

for some C’ > 0. Letting F3 denote the union of atoms A € w such that fi,(F3/A) >
1y 1
|logd| 2, it follows that fi4(F3) < C’|logd| 2 . This is at most € by choice of ¢.
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The same precaution allows us to get the same bound on ﬂg(ﬁ4) as in [BD20].

Finally, the bad set to be avoided in the construction of the joining is By U (U;l:lﬁi).
Its measure is less than ce by choice of §. From this point, once the measure of the bad set
is controlled, the rest of the proof in Section 6.3 of [CH96] can be repeated verbatim. This
proves that a is vwB. O

Proposition 3.7.4. Under the assumptions of Proposition 5.7.1, the measure [ig is flow
adapted '®.

Proof. Let Q = {(x,y,0) € Q x S'} C T3 denote the phase space for the billiard flow ®;
with the usual Euclidean metric denoted by dg. Let v, be the flow invariant measure
obtained as the image of fi;, by the conjugacy map between {2 and Q. Let

Sy ={®_4(2) €Q|z€Syand t < 7(T'2)}

denote the flow surface obtained by flowing Sy backward until its first collision under the
inverse flow. Similarly, let

S ={Pi(2) €| 2€ Sy and t < 7(2)}

denote the forward flow of Sy until its first collision. To show that the measure v; is
flow-adapted, it suffices to show that [, |log do(x,Sy)| dvy(x) < co. For then this implies
that log || D®,|| is integrable for each ¢t € [—Tmin, Tmin| and then by subadditivity for each
teR.

Let P*(-) denote the projection under the forward (backward) flow of a subset of
until first collision. Let N2 (-) denote the e-neighborhood of a set in M in the Euclidean
metric dy; and let N(-) denote the e-neighborhood of a set in © in the metric dg. It
follows from [CMO06, Exercise 3.15], that there exists C' > 0 such that for any € > 0,

P~(NE(Sy)) € NML2(S1)  and similarly  PT(NE(SH)) € N&Lo(S-1)  (3.7.3)
From (3.6.5), there exist Cy > 0 and v > 1 such that
11g(NM(S11)) < Cylloge| ™7 for all e > 0. (3.7.4)
Putting together (3.7.3) and (3.7.4) yields
V(NS5 ) < TmaxCy|log Ce¥/2| ™7 < C'rpax| log e 77 . (3.7.5)

For p > 1 to be chosen below, define for n > 1, 4, = NeQ,np (Sp)\ Ng_(nﬂ)p (Sy)- If
x € Ay, then |logdg(z,Sy )| < (n+ 1)P. Thus we estimate using (3.7.5),

/Q|10gdg(x,50_)| dyy <1+ logdiam(Q2) + Z

n>1

< 1+ logdiam(Q) + Z(n + 1)PC" rpaxn ™ P,
n>1

/A llog da(z, Sy )| dv,

and the series converges as long as p > 1/(v — 1). A similar argument shows that
log dg(z,Sy) is v, integrable so that v, is flow adapted. O

18. This result is due to Mark Demers. I thank him for allowing me to use his proof.



104 Chapter 3. A family of natural equilibrium measures for Sinai billiard flows

3.A DMotivations from uniform hyperbolic dynamics

We start this note by presenting the usual method the existence of measures of maximal
entropy is proved in the case of uniform hyperbolicity. First, we consider a hyperbolic
transformation of a compact set, and then the case of an Anosov flow.

3.A.1 Hyperbolic maps

Let X be a compact Riemannian manifold and let T': X — X be a C" diffeomorphism.
Assume that T is uniformly hyperbolic, that is

A > 1,3C > 0,3E°, E¥ C TX such that
(i)TX = E°® E*, DT(E®) C E*, DT"Y(E") C E",
(12) || DaT"vs|| < CA"[[vs||,  Vn >0, Vo, € EF C T X,
(i13) || DT~ vy || < CX"|vull, VR >0, Vo, € EY C T, X.

One fundamental theorem about hyperbolic dynamic is the Hadamard—Perron Theorem
[KH95, Theorem 6.2.8] which states that there exists two unique families of C" manifolds,
{W,;F ez and {W,, } ez, everywhere tangent respectively to £ and to E¥, obtained as
the graph of some functions, and satisfying some stability and contraction properties. A
key tool in the proof is the construction of families of stable and unstable cones.

As a consequence [KH95, Corollary 6.4.10], all such diffeomorphisms are expansive,
that is

30 > 0,Vr,y € X, [d(T"(x),T"(y)) <6, Vn € Z = x = y|. (3.A.1)

From the expansive property, it follows from [Wal82, Theorem 8.2] that the metric
entropy p + h,(T') is upper semi-continuous, hence the existence of equilibrium states for
every continuous potential — and in particular existence of measures of maximal entropy
for the zero potential. In the proof of [Wal82, Theorem 8.2], expansiveness is only use
to get the equality h,(T) = h,(T,.A) for partition A with diam(.A) < § (the expansivity
constant of T") and any 7T-invariant measure p.

As proved by Bowen [Bow72a, Theorem 3.5], the expansiveness assumption of [Wal82,
Theorem 8.2] can be weakened to entropy-expansiveness (the proof remains unchanged).
This weakening will be relevant in the case of Anosov flows.

3.A.2 Anosov flows

Let X be a compact manifold and ¢ = {¢'} : R x X — X be a smooth flow. Assume that
¢ is an Anosov flow, that is

3x > 1,3C > 0,3E°, E*, E° C TX such that
(1)) TX =E‘@® E°*® EY,
d
(ii) DY (E*") = E¥/* dimES = 1, - ol(xz) € ES~ {0},
t=0
(i41) || Dap{ps || < O™, || Dapyull < CX7F, W > 0.
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In [Bow72b, Proposition 1.6], Bowen proves that an Anosov flow is flow expansive (in
the sense of Bowen—Walters), that is — as defined in [BW72] in the case of a fixed-point
free flow,

Ve > 0,30 >0, Vo,y € X, Vh € C°(R) w1th h(0)

=0,
[d(¢' (), " (y)) <8, Vt € R =y € =<l (2))].

(3.A.2)

The key ingredient of the proof is the local product structure for hyperbolic flows. From
(3.A.2), it is easy to see, for h = id, that an Anosov flow satisfies the following weaker

property

de >0, ds > 0, Vz € X,

T.(z)={y e X |VteR, d('(z), o' (y)) < e} C el (a). (3.A.3)

Bowen proved [Bow72a, Example 1.6] that (3.A.3) is a sufficient condition so that every
time ¢’ of the flow is entropy-expansive. Therefore the map p € Mx (') — h,(p!) is
upper semi-continuous, and so is its restriction to Mx(¢) C Mx(p'). Hence, Anosov
flows have equilibrium states for every continuous potential, and in particular for the zero
potential, measures of maximal entropy.

3.B Obstructions for the Billiard Flow

In the previous section, in both situations, proofs of existence of MME use some sort of
expansiveness. However, the existence of a local product structure is a key ingredient
in order to establish the expansivity property: it gives a scale used as the ¢ in (3.A.1)
and the ¢ in (3.A.3). Furthermore, the uniform contraction of stable (resp. unstable)
manifolds for large positive (resp. negative) times is used, and not some estimates of their
lengths in negative (resp. positive) times (such as fragmentation or growth lemmas, see for
example [CMO6]).

3.B.1 Entropy expansiveness

In Bowen’s proof, the local product structure is the main tool in order to prove flow
expansiveness. In the case of the billiard flow, their is no such structure. Indeed, stable and
unstable manifolds exist only for Lebesgue-almost every point and there is no deterministic
control of their length (hence no uniform scale for a local structure). One might argue that
a billiard flow admits invariant “cone" fields [BDL18, Section 2] and construct stable and
unstable curves, but then the control on the length of those curves when applying the flow
is in term of expansion, not in term of contraction.

It then seems that h-expansiveness of each time ¢! of the flow is too much to ask
for. Still, one might hope that each ¢! is asymptotically h-expansive, that is h*(¢t) =

hm h*(pt, ) = 0, where h*(¢, &) = sup h(¢', B(z,¢)). This definition was first introduced
reX
by Mls1urew1cz in [Mis73] where he proved that the metric entropy of an asymptotic

h-expansive transformation is upper semi-continuous.

The quantity h*(¢?) is usually referred to as the topological tail entropy of ! [Dowll].
In the context of smooth dynamics, Buzzi [Buz97] has shown that if f € C"(M), then
h*(f) < w for some constant R(f). In particular, the metric entropy of a C*
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(a) Some common collisions (b) Distinct collisions

Figure 3.2 — Two examples of two periodic trajectories.

transformation is upper semi-continuous. Clearly, this result does not apply to billiard
flows.

Proving that the topological tail entropy of the billiard flow is zero is enough to prove
the upper semi-continuity of the metric entropy, hence the existence of some measure of
maximal entropy.

3.B.2 Relations with the Collision Map

In [BW72, Theorem 6], Bowen and Walters prove that the special flow constructed over a
continuous transformation and under a continuous return time function, is flow expansive
if and only if the base map is expansive. Since flow expansiveness is an invariant for flow
under reparametrization, without loss of generality, the return time function can be chosen
constant.

In [BD20], Baladi and Demers show that the collision map is expansive. However, since
the return time is only piecewise continuous, it is not easy to relate the expansivity of
the collision map to flow expansiveness of the billiard flow. As shown in Figure 3.2, two
trajectories can be easily separated by the collision map, but they remain close in the
phase space of the flow. We see that for a § too large in (3.A.2) (and a natural choice
of h), the two trajectories cannot be distinguished. What could be a good choice for 67
The main problem being to find a ¢ independent of trajectories (it is easier to find a §
for specific trajectories, such as those ones in Figure 3.2, but the inf of those § over all
trajectories might be 0). If such § existed, we expect it is controlled in some way by Tpin.

For similar reasons, it appears that it is not a simple consequence of the collision
map expansiveness for the flow to satisfy condition (3.A.3) (which is a weaker than flow
expansiveness). For example, the two orbits shown in Figure 3.2 (b) are close in the phase
space of the flow, but far apart in the phase space of the collision map (since the collisions
they make are distinct).



Chapter 4

Measure of maximal entropy for finite horizon Sinai billiard
flows

Abstract

This chapter contains the results of [BCD22]. Using recent work of Carrand [Car22b]
on equilibrium states for the billiard map, and bootstrapping via a “leapfrogging’
method from [BDyn], we construct the unique measure of maximal entropy (MME)
for two-dimensional finite horizon Sinai (dispersive) billiard flows ®! (and show it is
Bernoulli), assuming the bound htop((Dl)Tmin > s log 2, where sy € (0,1) quantifies
the recurrence to singularities. This bound holds in many examples (it is expected to

i

hold generically).

4.1 Introduction and Main Result

A Sinai billiard table @ on the two-torus T? is a set Q = T? \ U;O;, for finitely many
pairwise disjoint closed domains @; with C® boundaries having strictly positive curvature
K. The billiard flow ®!, ¢t € R, is the motion of a point particle traveling in @ at unit
speed and undergoing specular reflections ! at the boundary of the scatterers O;. The
associated billiard map T': M — M, on the compact metric set M = 0Q x [-7, 7], is the
first collision map on the boundary of (). Grazing collisions cause discontinuities in the
map T', but the flow is continuous. However, it is not obvious that the flow satisfies a
condition (such as asymptotic h-expansiveness) sufficient for the upper-semi continuity of
the Kolmogorov entropy (see [Car22b, Appendices A and B]). There thus does not appear
to exist any quick way to prove that the billiard flow admits a measure of maximal entropy.

To state our main results, Theorem 4.1.4 and ? Corollary 4.1.5, we introduce some basic

0. Part of this work was done during a workshop at ICMS, Edinburgh in June 2022. The research of VB
and JC is supported by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 787304). MD is partially supported by National
Science Foundation grant DMS 2055070.

1. At a tangential collision, the reflection does not change the direction of the particle.

2. The condition (4.1.4) there is discussed in Lemma 4.1.3.
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notation. For z € M, let 7(x) denote the flow time from = to T'(z), and set
Tmin = Inf 7 >0, Tmax =sup7, A =14 2mninf .

Throughout, we assume finite horizon, that is: there are no trajectories making only
tangential collisions. Finite horizon implies Tynax < 00.

The topological entropy htop(cbl) of the continuous map ®' is the supremum of the
Kolmogorov entropies h, (®!) of the ergodic ®!-invariant probability measures. Set

P(t) = sup {h(T) — t/rd,u}, £>0.
p:T-invariant ergodic probability measure
The real number P(t) is called the pressure of the potential —¢7 and a probability measure
¢ realising P(t) is called an equilibrium measure for —¢7.
Viewing ® as the suspension of 7" under 7, Abramov’s formula says that any ergodic
probability measure v invariant under the time-one map ®' satisfies

V= H
Jrdp

where p is an ergodic T-invariant probability measure, and, in addition,

® Leb, (4.1.1)

hy, (@) = ) . (4.1.2)

In the coordinates x = (r, ), where r is arclength along 00; and ¢ is the post-collision
angle with the normal to 00;, let So = {(r,p) € M : ¢ = 5} denote the set of tangential
collisions on M. Then for any n € Z,, the set S,, = U;__TE)TiSO is the singularity set of T™.
Following [BD20], define Mg to be the set of maximal connected components of M \ S,
for n > 1, and set

.1 n
hy = lim - log # Mg

(existence of the limit is easy [BD20]). Then, for fixed ¢ < 7/2 close to 7/2 and large
n € N, define so(¢,n) € (0,1] to be the smallest number such that any orbit of length
equal to n has at most sgn collisions whose angles with the normal are larger than ¢ in
absolute value. If

hs« > s0log2 (4.1.3)

then [BD20] proves that P(0) = h,, and there is a unique equilibrium measure ., =
for t = 0, which is the unique measure of maximal entropy (MME) of T. There are many
billiards [BD20, §2.4] satisfying (4.1.3), and in fact we do not know any billiard which
violates it. (Note also that Demers and Korepanov showed [DK22] that a conjecture of
Balint and Téth, if true, implies that, generically, one can choose ¢ and n to make sg
arbitrarily small.)

Using Abramov’s formula, Carrand showed the following:

Proposition 4.1.1 ( [Car22b, Lemma 2.5, Cor. 2.6]). The real number t = hyop(®!) > 0
is the unique t such that P(t) = 0. In addition, the set of equilibrium measures of T' for
—htop(®)T s in bijection with the set of MMEs of the flow via (4.1.1).
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Denote X, 7 := Y7257 0 T* (to avoid confusion with S, and the notation S? below).
We next state Carrand’s main results (see also Proposition 4.3.1 below).

Theorem 4.1.2 ( [Car22b, Theorem 2.1, Theorem 1.2]). (a) The following® limits exist:
: 1 2 —tXnT
P.(t) = lim —logQu(t), with Qn(t) = A% le co(ay, VE>0.
EMg

Moreover, Py(t) > Pi(s) > P(s) for all0 <t < s, and* t — Pi(t) is convez.
(b) If t > 0 is such that
P, (t) + tTmin > solog2, (4.1.4)

and
lOgA > t(TmaX - 7—mim) ) (4.1.5)

then there is a unique equilibrium measure p for —tT. This measure charges all open sets,
is Bernoulli, and P,(t) = P(t). Finally, ps is T-adapted,® that is

/|log d(w,81)| dpy < 0. (4.1.6)

In view of Proposition 4.1.1 and Theorem 4.1.2, to establish existence and uniqueness
of the MME of the finite horizon flow ®, it suffices to check (4.1.4) and (4.1.5) for
t = hiop(®1) > 0. We next discuss these conditions. The first one is very mild:

Lemma 4.1.3. The bound (4.1.4) holds at t = hyp,(®1) as soon as
Ptop(®1) Tinin > s0log 2. (4.1.7)

The bound (4.1.7) holds as soon as

hye 2B 50log 2. (4.1.8)

Tmax

If (4.1.4) holds for some t' > 0 then it holds for all t € [0,].
It is not hard to find [Car22b, Remark 5.6] billiards satisfying (4.1.7).

Proof. The first claim follows from Proposition 4.1.1 and the bound Py (t) > P(t) for all
t > 0. The second claim holds because (4.1.2) implies hyop(®) > fL > D= Finally,

Td/J,* — Tmax

the first claim of Lemma 4.3.3 below implies that ¢ — P, (t) + t7min iS nonincreasing. [

The second condition (4.1.5) will require more efforts. Obviously, for any finite horizon
billiard, there exists £ > 0 such that (4.1.5) holds for all ¢ € [0, #]. However, we do° not know
any billiard such that (4.1.5) holds for ¢t = hiop(®1) (that is, log A > hiop(®)(Tmax — Tmin))-
Fortunately, it turns out that (4.1.5) is not necessary: Assuming only finite horizon and
(4.1.4) at t = hop(®'), we will extend the conclusion of Theorem 4.1.2 to t = hop(®!)
by adapting the bootstrapping argument in [BDyn, Lemma 3.10] (used there to cross the
value x = 1 at which the pressure for —xlog J*T" vanishes). This is our main result:

3. By [BD20] we always have P, (0) = h, > P(0).

4. The fact that P (t) is strictly decreasing is immediate, see (4.3.5). Convexity follows from the Holder
inequality as in [BDyn, Prop 2.6].

5. To establish (4.1.6), Carrand shows that the p; measure of the e-neighbourhood of S+1 is bounded
by Ct|loge|” for v > 1 and C; < oo.

6. Note that (4.1.2) implies htop((I)l)(Tmax — Tmin) < s (Tmax/Tmin — 1).
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Theorem 4.1.4. Let T be a finite horizon Sinai billiard map such that (4.1.4) holds at
t = hiop(®). Then for allt € [0, hiop(P)], we have P(t) = P(t), and there exists a unique
T-invariant probability measure p; realising P(t). This measure charges all nonempty open
sets, is Bernoulli and T-adapted.

Our proof furnishes tog > htop(®!) such that the key Small Singular Pressure properties
(4.3.1), (4.3.2), and (4.3.3) hold for all t € [0,tc0]. If too > htop(®') and if (4.1.4) holds for
some t2 € (htop(®'),too), then the conclusion of Theorem 4.1.4 holds for all ¢ € [0, ta].

Theorem 4.1.2 and Proposition 4.1.1 of Carrand, combined with Theorem 4.1.4 and
the proof of [Car22b, Props. 7.1 and 7.2] for Bernoullicity of the flow, give:

Corollary 4.1.5. Let T be a finite horizon Sinai billiard map such that (4.1.4) holds at
t = hiop(®L). Then
Mhtop(‘bl)

= ———®Leb
de’uhtop(q)l)

Vg
s the unique measure of maximal entropy of the billiard flow. This measure is Bernoulls,
it charges all nonempty open sets, and it is flow adapted, that is”

/ |log dq(z, S5)|dvs < 0o, Q=Q xS, (4.1.9)
Q

where dg is the Euclidean metric, S5 = {®_s(2) : 2 € Sy, s < 7(T712)}, and S§ =
{®s(2) : 2 € Sp, s < 7(2)}.

Contrary to [BDyn], homogeneity layers are not used for our potentials —¢7. They are
not needed because 7 is piecewise Holder and thus e satisfies piecewise bounded distortion.
The results of Carrand [Car22b] that we build upon are based on bounds for transfer
operators acting on Banach spaces of distributions defined with the logarithmic modulus
of continuity of [BD20]. We could not find a Banach norm giving a spectral gap (there is
no analogue of [BDyn, Lemmas 3.3 and 3.4] for ¢ # 0, see [Car22b, Lemma 3.1] for v # 0
where (log |W|/log |W;|)" replaces (|W;|/|W|)*). We thus do not have exponential mixing
for (T, ,U,htop(cpl)). (Even if we had, it would not immediately imply exponential mixing for

(@4 v,).)

The paper is organised as follows: Section 4.2 is devoted to recalling notation from
[BD20] and to two basic lemmas on cone stable curves iterated by the billiard map. Sec-
tion 4.3 is the core of the paper: In §4.3.1, after defining the Small Singular Pressure (SSP)
conditions (4.3.1), (4.3.2), and (4.3.3) and stating Carrand’s conditional Theorem 4.3.1,
we reduce Theorem 4.1.4 to showing SSP for some t > hiop(®!) (Lemma 4.3.2). Then
we set up the bootstrap mechanism, by introducing in (4.3.4) the supremum to, > 0 of
parameters satisfying SSP (this is the new idea). Lemma 4.3.3 embodies our version of the
first ingredient of the bootstrap from [BDyn, Definition 3.9] (“pressure gap”), constructing
a “pivot” t. < to and its associated parameter s.(ti) > too. The key lemmas inspired by
the second ingredient of bootstrapping [BDyn, Lemmas 3.10-3.11] (“leapfrogging across t.
via the Holder inequality”), are stated and proved in §4.3.2. Finally, Lemma 4.3.2 (and
thus Theorem 4.1.4) is proved in §4.3.3: We assume for a contradiction that t < hiop(®1).
Since t. < to, this implies, by results from [Car22b] recalled in Proposition 4.1.1 and

7. Note that (4.1.9) implies that log || D®:|| is integrable for each t € [—Tmin, Tmin] S0 that, by subaddi-
tivity, it is integrable for each t € R.
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Theorem 4.1.2(a), that the pressure of ¢, is positive. Then, we exploit this positivity in
order to pass over the pivot t, via the key lemmas from §4.3.2, obtaining the desired
contradiction.

Observe that using Carrand’s [Car22b] analysis of families more general than g, = —t7,
the results of the present paper extend to suitable one parameter-families g; of piecewise
Holder potentials. We abstain from spelling out the details.

4.2 Notations. n-step Expansion. Growth Lemma

We recall here some facts about hyperbolicity and complexity of finite horizon Sinai billiards.
There exist continuous families of stable and unstable cones, C* and C*, which can be taken
constant in M, and a constant C; € (0,1) such that,

IDT™(2)v| > CLA™ v, Yo € C¥, | DT"(z)v| > C1A™||v|, Yo €C®,  (4.2.1)

where, as before, A = 1 4+ 27,in/Crnin is the minimum hyperbolicity constant.
A fundamental fact about this class of billiards is the linear bound on the growth in
complexity due to Bunimovich [Che0l, Lemma 5.2],

There exists K > 1 such that for all n > 0, the number of curves in S+, (42.2)
that intersect at a single point is at most Kn. o

The parameter v > 1 defining the Banach space norms in [Car22b] is chosen so that
hs > spylog 2, which is possible due to (4.1.3). Next, choosing m so large that,

%log(Km—F 1) < hy — soylog2,

we take 09 = dp(m) € (0,1/C1) so that any stable curve of length at most dy can be cut by
S_y into at most K/ + 1 connected components for all 0 < £ < 2m.

Let W* be, as in [BD20, §5], the set of (cone-stable) curves whose tangent vectors
lie in the stable cone for T', with length at most dy and curvature bounded above by a
constant C depending only on the table (homogeneity layers are not used). The constant
Cx is chosen large enough that T —Lyps WS , up to subdivision of curves. For n > 1,
5 € (0,80, and W € W, let G3(W), L2 (W), SS(W), and Z (W) be as in [BD20, §5]: Set
GO(W) = W and define G (W) for n > 1 to be the set of smooth components of T~ for
W' e G® (W), with elements longer than § subdivided to have length between §/2 and 6.
More precisely, if a smooth component U has length £6 + p with £ > 1 and 0 < p < J, we
decompose U into:

e cither £ > 2 pieces of length §, if p =0,

e or ¢ > 1 piece(s) of length ¢ and one piece of length p, placed at one of the edges of
U,if p>94/2,

e or { —1 > 0 piece(s) of length d, one piece of length §/2 (at one tip) and one piece of
length p+ &/2 (at the other tip), if p € (0,0/2).

Let L2 (W) denote the set of curves in G2(W) that have length at least §/3 and let
SO(W) = GS(W) \ L (W). For 0 < k < n, we say that U € GJ(W) is an ancestor of
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V € GS(W) if T"*V C U, and we define Z2 (W) to be those curves in G (W) that have
no ancestors of length at least 6/3 (aside from perhaps W itself).

Finally, let §; < dp and n; > m be chosen so that [BD20, eq. (5.6)] holds: For any
stable curve W with |W/| > §;/3 and n > ny,

H#LO (W) > 2460 (W) .

Up to replacing d; by a smaller constant, we may and shall only consider values of § of
the form 6y/2" for N > 0. By induction on N, selecting the short tips in a compatible
way when dividing § by two, we require that ® for all W € W,

Vn > 1, if 8" < & then VU" € LY (W), 31U’ € G2 (W) with U” c U’ (4.2.3)

For t > 0, we introduce the following shorthand notation,

SSWt)y= > e ooy, Gt = > e o,
W;eSS (W) WieG (W)
and
LY (W,t) == G (W,t) — S5 (W, 1), Z(W,t) == > [e”™7|coqw,) -
W, €8 (W)

The lemma below replaces the usual one-step expansion (see [BDyn, Lemma 3.1]):

Lemma 4.2.1 (n-Step Expansion). For any to > 0 and 6y € (e~ ™n, e~ ™min/2) there exist
a finite no(to,00) > 2 and oy = Q‘S—R, > 0 such that

S (W, ) < G (W, 1) < 0508, YW € W* with [W| < &y, Vt > to. (4.2.4)
See also [Car22b, Lemma 3.1(a)].

Proof. Clearly, sup —tlg —tTmin < 0 if t > 0. For any ng > 1, there exists do(ng) = 25—1%
such that any W € W?® with |W| < d¢ is such that 77"0(W) has at most (Kng + 1)
connected components [Che0l, Lemma 5.2]. In addition using [CMO06, Ex. 4.50] as
in [BD20, Proof of Lemma 5.1], we have |[TW| < C'|W|2~* for a uniform €’ > 0 and
all j > 1 (see also [Car22b, Lemma 3.1]). Up to taking smaller dy, depending on &y (and
ng), we can assume that |[T~7W| < & for all 0 < j < ng. Then, for |IW| < &y, there can be
no additional subdivisions of 7" (W) due to pieces growing longer than dy, so that

G2 (W,t) < (Kng + 1)e~tmommn (4.2.5)

The same bound applies to Sg%(W, t), since any element of Sg%(W) must be created by a
genuine cut by a singularity, not an additional subdivision due to pieces growing longer
than dg. For any fixed tg > 0 and y € (e~ min, e_Tmiﬂ/Q), we can find ng = ng(to, 6p) > 2
such that (Kng + 1)1/70 < gloemminto, Since G emminto < ghe™mint for all ¢ > t, it follows
that (4.2.4) holds for dg = dg(ng, do)- O

8. We use this in the proof of Lemma 4.3.7 below. An alternative way to guarantee (4.2.3) for a fixed
length scale &’ is to define g;i' (W) as usual and treat it as the canonical partition of T7"W. Then for any
§" < &'/2 one can define GJ (W) as a refinement of G5 (W), guaranteeing (4.2.3). This is done implicitly
in the proof of [BDyn, Lemma 3.11] and could be applied in our Lemma 4.3.7 below by taking §' = §;, of
that lemma. We do not adopt this approach since the canonical scale would not be chosen until nearly the
end of our proof.
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Lemma 4.2.1 implies the following analogue? of [BDyn, Lemmas 3.3-3.4, ¢ = 0]:

Lemma 4.2.2 (Growth Lemma). Fiz 6y € (e"™min, e~ ™min/2) and tq > 0. Suppose § < &
and my(8) > no(to,0o) are such that any W € W* with |W| < & has the property that
W\ S_; comprises at most Kj+ 1 connected components for all 1 < j < 2my. Then for
any t > tg and each W € W with [W| <4, we have

TH(W,t) < 05", Yn > ma, (4.2.6)
T3(W,t) < Kmi63t, ¥n < my, (4.2.7)
and 4
Go(W,t) < —— Qu(t),Vn > 1. (4.2.8)
Ch0

Proof. Let ng(to,0p) and do(ng,dy) be given by Lemma 4.2.1. By choice of ng, if ¢ =
Tmin + log 8y > 0, then (Kng + 1)1/ < e, Remark that (Kn + 1)/" decreases to 1 for
n > 2 since K > 1. Thus (Kn + 1)1/” < e for all n > ng. With this observation, for &
and m; as in the statement of the lemma, the bound (4.2.6) can be proved by induction on
n (just like [BDyn, Lemma 3.3] for ¢ = 0), writing n = gm +¢, with ¢ > 1 and 0 < £ < my,
using ¢ — 1 times the bound (4.2.5) with m; iterates in place of ng, and using it one last
time with m; + £ iterates, since elements of Z3(1W) have been short at each intermediate
step.

For n < my, the bound (4.2.7) follows from the relation between § and m;.

Finally, to show (4.2.8), first note that, since each W; € G%(W) is contained in a single
element of M{, and since |[T~"V| > C1A"| V]| for any stable curve |V| (due to (4.2.1)),
there can be at most 2/(C16) + 2 elements of G2(T) in one element of M. Note also that
|e*tE"T|CO(Wi) < \e*tZ"T]CO(A) whenever W; C A € M. This gives the required bound
since C16 < 1. O

4.3 Bootstrapping

4.3.1 Preparations: Small Singular Pressure. Two Bounds from [Car22b]|
We say that Small Singular Pressure #1 (SSP.1) holds at ¢t > 0 for € € (0,1/4] if

g (W, t)

there exist & = d(e) = % € (0,61] and a finite ny = ni(e) > ny (4.3.1)
So (W, t ~
such that o (W, )§5,Vn2nt,VWGWSWith\W|Zét/?),

and, in addition,

—NtTmin

e
Z sup s < 00
n>ng WEV/\\/S Ln (W7t)

W (>6:/3

(4.3.2)

9. See [Car22b, Lemma 3.1(b)] for the replacement for [BDyn, Lemmas 3.3-3.4, ¢ # 0], using a
logarithmic weight with v > 0 as in [BD20].
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together with its “time-reversal," obtained by replacing 7' with its inverse 77!, W by )7\/\“,
and replacing 7 with 7 o 7! (that is, replacing 3,7 with 0 ;7o T~ = (£,7) o T™7),
both hold.

Assume that (4.3.1) and (4.3.2) hold at ¢ > 0 for € < 1/4, §;, and n;. Then we say that
Small Singular Pressure #2 (SSP.2) holds at ¢ for e if !

for any W € W?* there exists ny (|[W|,é,€) € [ng,00) such that (4.3.3)
Sp (W:1)

< 2e,VYn >nf(|W|, b, ¢e),
o < W1 .2)

together with its time-reversal (in the sense defined above) both hold.

Note that the time-reversal of conditions (4.3.1), (4.3.2), and (4.3.3) involve stable
curves for 771, that is, unstable curves for 7. In view of the time reversibility of the billiard
dynamics (see [CMO06, Sect. 2.14] for the precise involution ¢), since 70 T~! = 70, and
T o is precisely the free flight time under 7! the conditions for 7" and 7 are equivalent '!
with those for 77! = /Trand To T~ =704

To establish Theorem 4.1.2, Carrand proved '? the following consequence of SSP:

Proposition 4.3.1 ( [Car22b, Theorem 1.2]). Assume'® (4.1.4) and that SSP.1 and
SSP.2 hold' att > 0 for e = 1/4. Then there is a unique equilibrium measure s for

—t1, this measure is T-adapted, charges nonempty open sets, and is Bernoulli. In addition,

Therefore, to show Theorem 4.1.4 it suffices to prove the following lemma:

Lemma 4.3.2. There exists ta > hiop(®1) such that (4.3.1), (4.3.2), and (4.3.3) hold at
all t € [0,t2] fore =1/4.
Setting
log A
o= —2" >0,

Tmax — Tmin
[Car22b, Lemmas 3.2 and 3.3 and Corollary 3.4] gives that, for any fixed € € (0, 1/4], each
t € [0, tc] satisfies SSP (that is, (4.3.1), (4.3.2), and (4.3.3)) for d;(g) > 0, n.(e) < oo, and
Ci < 0.

The starting point of our bootstrap argument is the following definition
too 1= sup{t’' > 0 such that (4.3.1),(4.3.2), and (4.3.3) hold for all 0 <t <#'}. (4.3.4)

We already know that too > to > 0. If P(to) < 0, then to > htop(fbl), and we have shown
Lemma 4.3.2. Otherwise, Lemma 4.3.7 below will establish that any 0 <t < s, satisfies
(4.3.1), (4.3.2), and (4.3.3) where s, > ts is constructed in the next lemma (inspired
by [BDyn, Definition 3.9]).

10. In the analogous condition of [BD20, Cor 5.3], there exists a uniform Cy such that ny (|W|, d:,¢) =

[log(|W]/8¢)]
Ctnt | log £ :

11. This equivalence does not always hold in [Car22b] where ¢7 is replaced by a more general g.

12. In particular, Carrand shows that (4.3.1) and (4.3.2) imply the analogues [Car22b, Prop. 3.5 and
3.8] of [BDyn, Prop. 3.14 and 3.15] for the Banach norm of [BD20]. He does not get a spectral gap.

13. See also Lemma 4.1.3.

14. SSP.1 suffices to construct the invariant measure pu: and check it is T-adapted. SSP.2 is used to show
ergodicity, which gives that u; is an equilibrium state for —t7, as well as the other claims.
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Lemma 4.3.3 (Pressure gap: Constructing the “pivot” t.). For allt > 0, the following
limit exists and belongs to [—Tmax, —Tmin) -

In addition, for any 0y € (e~ Tmin e~ ™min/2) " defining

t| P ()]

S«(l) == , t€(0,t0)

O = @) + Gogoyz” '€ O)
there exists t, € (0,1s0) such that s, 1= s(tsx) > too-

Remark 4.3.4. The parameter s.(t.) > t. is defined so that

9(3)*/26|P’,(t*)\(s*7t*) —-1.

The reason for this will become clear in the proof of Lemma 4.3.7.

Proof. Existence of the limit follows from the convexity of P, (t) which implies that left
(and right) derivatives exist at every ¢t > 0. Next, if 0 < s < ¢, we have

Z |e_tEnT|C’0(A) < |en(s—t)7'min| Z |€_SE"T|CO(A) , Vn>1, (4.3.5)
AeMp AeEMy

which implies P’ (t) < —Tiin. A similar computation gives P’ (t) > —Tinax-
Next, to construct t,, we first check that

so(t) >t (1+ :mi“ ), Yt € (0,ts0) - (4.3.6)
Indeed, since
1 | log 0|
. >14 =
~ Tlogbol = = T [P (1]
S 12A0] =)

the bound (4.3.6) follows from the fact that |P’(¢)| < Tax implies

“Og 60| [ Tmin 1) .

2|PL(#)]

M
4Tmax

Then, taking t, = too — v for v € (0,t), it suffices to pick v > 0 such that

.
(1+4TIZ:X)(t°°_U) > too -

Since too > to = 10g A/(Tmax — Tmin), the above bound holds as soon as

v < log A (Tmax — Tmin)*l . (1 + 4@)_1 .

Tmin

d

We record for further use two key bounds due to Carrand. Assume that (4.3.1) (4.3.2)
hold for ¢, then by [Car22b, Prop 3.5] there exists cp; > 0 such that

GO (W, 1) > cope™™ D | Wn > 1, VW € W* with |W| > 6,/3, (4.3.7)
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and by [Car22b, Prop 3.8] there exists ¢+ > 0 such that

Qn(t) < le"P*“), Yn>1, (4.3.8)

Clt

Observe that (4.3.8) together with (4.2.8) give the upper bound

GEWt) < Q) < —0 PO yn > 1,6 < 6. (4.3.9)

- Ch - 01501,t

Finally, (4.3.1) and (4.3.7) imply the following lower bound for any scale § = &o/2".

Lemma 4.3.5. For allt € (0,ts) and § = 80/2%, there exists co+(5) > 0 such that
GO (W,t) > co(6)e™™*D | yn > 1, YW € W* with [W| > 6/3. (4.3.10)
The time reversal of the statement holds for T—1.

Proof. First, assume & < d;. Each element of L2 (W) contains at least d;/(36) elements of
G3(W). So if [W| > 6;/3, then (4.3.1) and bounded distortion for 7 give

—tC’5 —tC(S —t05
o L Wt) = TG (W) = SR ), (43.11)

0
G, 1) > i

for all n > n;, where we have used (4.3.7) in the last step.

Next, if |[W| € [§/3,:/3), then there exists nyy < C'log(d;/d) such that T-"W (W) has a
connected component V' of length at least d;/3. This is because while 77"W remains short,
the number of components of T7"W is at most Kn+1 by (4.2.2) while |T7"W| > C1A"|W|
according to (4.2.1). Thus setting n = max{ny,n;}, we apply (4.3.11) to V to estimate
for n > n.

Gr(W.t) = G _s(V,t)e " Tmex > = HTmant B *(t))e_tc%cmenp*(t) ,

which proves (4.3.10) by definition of n. If n < 7, then trivially

GO (W, 1) > e max > o= TmaxtP() gnP(t)

Finally, if § > &;, then since each element of G2(W) contains at most 36/d; elements of
L3(W) and S% (W) C S3(W), we have

4] )
G3H(W,1) = SJ(W,8) + (W) < S3W,0) + S GRW,0) < (14 52) G
t ¢
which gives the required lower bound on G®(W,t), applying (4.3.7).
The time reversed statement of the lemma follows immediately using the reversibility

of the billiard, as explained earlier. O

4.3.2 Key Lemmas

In view of Lemma 4.3.7 below, we adapt [BDyn, Lemma 3.10]:
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Lemma 4.3.6 (Leapfrogging via the Hélder Inequality). For all'® t > t, and k > 0 there
exists wy = wy(t«,t) > 0 such that for all W € W* with |W| > 6, /3,

GWot) > w;{(g*at)‘en(P*(t*)—UP’(t*)|+,§)(t_t*))7
do

V5:2—N§6t*,Vn2nt*.

(4.3.12)

In addition, for each § = 2‘5—0 < do there ezists wi = wi(ty,t,9) > 0 such that for all
W e W? with |[W| > §/3,

GO (W, ) > wi(ty, t,8) - P ()= (IPLEHR) (L)) Ty > 1 (4.3.13)
Finally, the time reversals of (4.3.12) and (4.3.13) also hold for the billiard map T—1.

The proof gives constants wy(t«,t) and w(t4,t,d) which tend to zero as t — oo (because
the constant 7 in the proof tends to zero as t — o0).

Proof. We start with (4.3.12) (for ¢ > t,). Recall from the proof of (4.3.11) that for
u € (0,ts) and 6 < dy, if |W]| > §,/3 and n > n,, then

GE(W,u) > e "¢ ‘i“c()uenp*(") V8 < 6y, 4.3.14
n 45 k)

since each V; € L3 (W) contains at least &,/30 elements of G2(WW).
Now, for s € (0, t.), taking n(s,t,ts) € (0, 1] such that nt + (1 — n)s = t., the Holder
inequality gives >°; al* < (32, a})"( iaf)l_n for any positive numbers a;. It follows that

for all 6< &;,, each W € W* with |[W| > §,, /3 and any n > ny, ,

(G, 1))/
502 tGrwsyya-r

5 1/n ] 1-1/n
o [t Ot nP*(t*)> nP,(s)
- (6 46 0,4:€ 01(561756

1-1/n
1/ _, o6 )1/" 8 n(Pa(t) = Pa(8)) 52 nP(2.)
I * * x \ Uk * NI (Tx 4 1
5(6 4 Ot Cicrs ‘ e - (4315)

where we used (4.3.14) with u = ¢, for the lower bound in the numerator, and (4.3.9) for s

for the upper bound in the denominator, recalling that {s,t.} C (0,ts) and §;, < 1 < do.
Since n(s,t,t«) = (t« — s)/(t — s), we have

1—n t—t

(Puft) = P =

(Pu(t) — Pu(s)).

Fix k > 0 and choose s = s(k,ts) € (0,1) close enough to t, (i.e. small enough
M = Nk(8, t,t.) > 0) such that (recalling 0 < s < t, and P’ (u) < 0 for all u > 0)

(Pi(s) — Pu(t))/(ts — 8) < |P.(ts)| + K. (4.3.16)

The bound (4.3.12) follows, setting, for s = s(k,t.) (recall that n, depends on t),

171/77,%
515 1/77#@ 8
(e, t) = (78022 ) :
w ( ,t) <€ 4 CO,t. C1C1,s

15. The same proof works replacing t. by an arbitrary number in (0, ts), as long as ¢t > t..
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For (4.3.13), we use that (4.3.9) for s implies that for any 6 € (0, d;, ), for each W € W
with [W| > 6/3, and all n > 1,

5 1/n
(Gh(W, L)) > (co. (5) - enP*(t*))l/”(LQ”P*(S))(U_”/W, (4.3.17)

0 >
gn(VVa t) - (gg(W? 3))(1_77)/77 - 01501’3

where we used (4.3.10) for t,. We conclude by taking s = s(k,t.) € (0,1) close enough to
t. such that (4.3.16) holds, setting (again, 7,, depends on t)

Wi (te,t,8) = co, (8)Y/ M (8)1 1/ (O 5y )/t
O

Our second key lemma is inspired by [BDyn, Lemma 3.11] (the proof below requires a
more involved decomposition of orbits):

Lemma 4.3.7. Let t, < too and s«(t«) > teo be as in Lemma 4.3.3. If P(t.) > 0 then the
SSP conditions (4.3.1), (4.3.2), and (4.3.3) hold at all t € [ts, s«) fore =1/4.

Proof of Lemma 4.3.7. We first consider condition (4.3.1) of SSP.1.
By definition of s, (recall that inf |P’ (s)| > —logfy/2)

L2l P —t) 1y, <t < s, (4.3.18)
Thus for all ¢’ € [ts, s«) there exists k1 = k(ts,t’) > 0 such that

gi= sup (0 2(PLEIHmE—t)) < (4.3.19)
b <t<t!

For m; > max{ng(t«,00),ns,) to be chosen later depending on & = 1/4, &, &;,, and k1, pick
d3(m1)€ (0,d:,] (as in the proof of Lemma 4.2.1) so small that any stable curve of length
at most d3 can be cut into at most K j 4+ 1 connected components by S_; for 0 < j < 2m;.
For n > mq, write n = fm1 + r, for some 0 < r < my and £ > 1. Let W € wWs
with [W| > d3/3. We group the curves W; € S% (W) with |[W;| < d3/3, as in the
proof of [BDyn, Lemma 3.11], according to the largest & € {0,...,¢ — 1} such that
TERmitry, c Vv e Liﬁnl(W) (such a k must exist since |W| > d3/3 while |W;| < d3/3).
Denote 0 by fgg—k)mﬁr(vj) the set of W; € G2 (W) thus associated with V; € Liﬁnl(W)
(such elements are known to be small only at iterates jmi+r). For such W;, T(f*k/)m”’"(Wi)
is contained in an element of Qfslk,(W) shorter than d3/3 for ¥’ < k. So for k > 0, we may
apply the inductive bound (4.2.6) since elements of f&ik)ml +r(Vj) can only be created by
intersections with S_,,,, at the first £ — k — 1 iterates and with S_,,,_, at the last step.
For k = 0, W itself may be longer than d3. Thus we first subdivide W into at most dy/d3
curves of length at most d3 and then apply (4.2.6) to each piece. This yields, for t, <t < ¢/,

-1
1 —t Y s T =t (o kymy4rT
SpEW) <> > e oy, > e HE=Rmr T o gy
F=0viers, (w) Wi€Zid L (V)
B} = _
D DD DI S T (4.3.20)
T klyers w)

16. Note that f(‘se_k)ml_H(Vj) was abusively denoted I&_k)mlw(\/j) in the proof of [BD20, Lemma 5.2],
see footnote 23 there.
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Next, recalling (4.2.3), for any £ > 1, each V; € Lkml(W) is contained in an element

U € g‘gt* (W). Since |Vj| > 63/3, there are at most 39, /93 different V; corresponding

kmq
to each fixed U;. Then we group each U; € Qét* ( ) according to its most recent long
ancestor W, € L(St* (W) for some j € [0, kmy]. Note that j = 0 is possible if |W| > d;, /3.
If |[W] < 4,/3, and no such time j exists for U;, then by convention we also associate
the index 7 = 0 to such U;. In either case, U; € Ig:;;l(W)’ and we may apply (4.2.6)
after possibly subdividing W into at most dg/d, curves of length at most d;,. Then, for
j > 1, we apply (4.2.7) from Lemma 4.2.2 to each Z, Ot (+) (since 03 < 4y, , the constant

kmi1—j
m1(dg,) < mq(d3), so the bound holds with our chosen my, although it may not be optimal),

Ly, (Wt) < 3?* ( Yo e o
° ET,r (W)
kmq
> > e eow,y D |€t2k”1”|00(m))
I=t weLit(w) UieTlr (W)
< 30, etkml pR —t%7 t(kmi—j)
>~ 53 ( t* + Z Z ‘ ’CO )KTTMQ )

I=t w,erlt (w)

Combining this estimate with (4.3.20) yields (summing over k for the j = 0 terms and
adding the term corresponding to k = 0),

8wty < 300 ™ g 35“ ei %K O L (). (4.3.21)
w(Wit) < 5 2 3.
j=1
For fixed k € {1,...,¢£ — 1}, and for each 1 < j < kmy such that Lét*( W) # (), the

lower bound (4.3.12) in Lemma 4.3.6 and the distortion constant e~*¢ > ¢~'C imply (note
that n —j > fmy +r —kmy >r+my > ng,),

GErw,t)> > e e o,y DL e o
Waeth* (W) Wi€Go3 (W)
K t*at n—j —(|P’ K — —t3,T
Wiy (53 8) (n ) (Pu(t) = (1P (1) 1) (=) S e oo, (43.22)

FEe
Wa€LS™ (W)

Combining (4.3.21) with either (4.3.22) (for j > 1) or (4.3.13) from Lemma 4.3.6 (for
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j =0) and setting A = 3e'C6;, Kmy, yields (using that P(t,) > 0),

Spvit) _ samy 00"
BW,t) ~ wp, (b, t, 03)e" Pt =IPLE)Em)(Et)

0—1 kmy 35t* Km 98(” j) 5t* (W t)

+ /
1;; “’glef/"c’ (n—j (P*(t*) (|P- (t*)\er)(t L)) [, ;st* (W, 1)

3do Pu(ty) = kml C(Pu(ts)
53 . w,i:l (t*, t, 53) - ma ( ) Wk (t*, ) Z

k=1 ]:1

380 A 1 &

< ne" + -
53 : w:;l (t*,t, 53) My Wiy (t*,t) 1—¢

35

< .
S 5w (b tos) mr T om () (11— am)

(4.3.23)

To establish (4.3.1), choose first m1 > ny, such that the second term is less than §, setting
0t := 03(m1), and then ny > my such that the first term is less than % for n > ny.

We next show (4.3.2). For n > ny, we deduce from (4.3.1) and (4.3.13) (for small x > 0)
that, for all W € W* with [W| > 6,/3,

Lit(W,t) > %ggt(w/’ t) > zw:(t*7t76t)enP*(t*)6—n(t—t*)(\PL(t*)|+n) )

Since e~ - (It 96/2 > e~tmin/2 By (4.3.18), while Pi(t.) > 0, it suffices to take &
such that (¢t — t.)k + %Tmin < tTmin to complete the proof of (4.3.2).

It remains to consider SSP.2. We may assume |IWW| < d;, /3 since otherwise (4.3.1) from
SSP.1 implies (4.3.3) with nj = n;. As observed in the proof of [BD20, Cor. 5.3], there
exists Cy (depending only on the billiard table) such that the first iterate £y at which
gjt* (W) contains at least one element of length more than d;, /3 satisfies

o < ng = ny(6,) := Co|log(|W|/6,)] -

Since |W| < &, /3, it suffices to consider the term corresponding to j = 0 (and k = 0)
n (4.3.23) (the other one is bounded by €/2 for n > m; for m; chosen as above). For this
purpose, for any n = ¢mq + r > my, the first term of (4.3.21) is replaced by

5 =3, _ 30un
- gin = gin < 20" gin. 14.3.24
303 0 kz_:l 03 0 = (53m1 ( )

where we have applied (4.2.6) from Lemma 4.2.2. For any n > max{ng, m;}, the bound
(4.3.13) from Lemma 4.3.6 is replaced by

GO (W, t) > Wi, (ts, t, 03) - e t2Tmaxg(n—n2)(Pu(t) =([PL () Fr) (E=t) (4.3.25)
Dividing (4.3.24) by (4.3.25), the term corresponding to j = 0 in (4.3.23) is bounded by
30t 00"

53 . w* (t* t 53) . e_tn27'maxe(n_n2)(P*(t*)_(|Pl_(t*)|+’i1)(t_t*))
1 )

35t ethTmax
*

Tomy - wy (ty,t,03) - 03

ngn—nz
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We conclude, since, if n}/nsy is large enough (depending on ¢, £, d3 = ;) then

gnz . m1-53 . w,’il (t*,t, 53)

—n/n2 tTmax\N2 E .
n(é e )< 5 30,

, Vn>mnj.

4.3.3 Theorem 4.1.4: Proof of Lemma 4.3.2

In view of the discussion above Lemma 4.3.2, it only remains to show Lemma 4.3.2 to
establish Theorem 4.1.4:

Proof of Lemma 4.3.2. If P(ts) < 0 we are done, as explained before Lemma 4.3.3.
Assume for a contradiction that P(ts) > 0. Let t. < t and s.«(ts) > to be as in
Lemma 4.3.3, and fix to, < t3 < sx. Then Lemma 4.3.7 applied to € = 1/4 gives that the
SSP conditions (4.3.1), (4.3.2), and (4.3.3) hold for all ¢ € [0, t2]. Since ta > t~, this is a
contradiction. O
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