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Propriétés ergodiques des flots en basses dimensions
incluant les billards dispersifs

Résumé

Cette thèse est divisée en deux parties. Dans la première partie, nous proposons une
preuve courte montrant que la croissance des intégrales ergodiques d’un flot uniquement
ergodique sur un tore en dimension deux – et admettant une section transverse dont l’ap-
plication de Poincaré a un nombre de rotation de type constant – est au plus logarithmique.
En appliquant ce résultat au développement asymptotique des intégrales ergodiques pour
les flots de Giulietti–Liverani, nous obtenons une nouvelle preuve de l’absence de résonance
de Ruelle non triviale de module strictement supérieur à un. Nous donnons également un
exemple de flot sur le tore renormalisé par un difféomorphisme Axiome A, satisfaisant les
hypothèses impliquant une croissance au plus logarithmique.

Dans la deuxième partie, nous construisons des états d’équilibre pour l’application
de collision d’un billard dispersif, associés à des potentiels Hölder par morceaux. Cette
construction repose sur l’étude d’un opérateur de transfert pondéré agissant sur des espaces
de Banach anisotropes de distributions. Nous montrons que lorsque le potentiel satisfait
certaines conditions techniques, alors il existe un état d’équilibre, qui de plus est unique,
Bernoulli, adapté et a un support total. Nous montrons qu’il existe un potentiel particulier
tel que l’ensemble de ses états d’équilibre est en bijection avec l’ensemble des mesures
d’entropie maximale du flot billard. Dans la dernière partie, nous montrons que ce potentiel
satisfait les hypothèses suffisantes garantissant l’existence et les autres résultats énoncés sur
l’unique mesure d’équilibre. Par conséquent, nous obtenons une condition suffisante pour
que le flot billard admette une unique mesure d’entropie maximale, et nous donnons des
exemples de billards qui satisfont cette condition. Enfin, nous prouvons que cette mesure
est Bernoulli, adaptée au flot et a un support total.

Mots-clés : Systèmes Dynamiques, billard dispersif, formalisme thermodynamique, opéra-
teur de transfert, Banach anisotrope, theorie spectrale, résonance de Ruelle



Ergodic properties of low dimensional flows including
dispersive billiards

Abstract

This thesis is divided into two parts. In the first part, we give a short proof showing
that the growth of ergodic integrals of a uniquely ergodic flow on a torus in dimension
two – and admitting a transverse section whose first return Poincaré map has a rotation
number of constant type – is at most logarithmic. By applying this result to the asymptotic
expansion of the ergodic integrals for Giulietti–Liverani flows, we obtain a new proof of the
absence of non-trivial Ruelle resonance of modulus strictly larger than one. We also give
an example of a flow on the torus renormalized by an Axiom A diffeomorphism, satisfying
the hypotheses implying at most logarithmic growth.

In the second part, we construct equilibrium states for the collision map of a dispersive
billiard, associated to piecewise Hölder potentials. This construction is based on the study
of a weighted transfer operator acting on an anisotropic Banach space of distributions. We
show that when the potential satisfies certain technical conditions, then the equilibrium
state exists, is unique, Bernoulli, adapted and has full support. We show that there exists a
potential such that the set of its equilibrium states are in bijection with the set of measures
of maximal entropy of the billiard flow. In the last part, we show that this potential
satisfies the sufficient assumptions guaranteeing the existence and the other results stated
on the unique equilibrium measure. As a consequence, we obtain a sufficient condition
for the billiard flow to admit a unique measure of maximal entropy, and give examples of
billiard tables that satisfy this condition. Finally, we prove that this measure is Bernoulli,
flow-adapted and has full support.

Keywords: Dynamical Systems, dispersive billiard, thermodynamic formalism, anisotropic
Banach space, transfer operator, spectral theory, Ruelle resonance.
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Chapter 1

Introduction

The field of Dynamical Systems is a very broad branch of mathematics focused on the
long term behaviour caused by some evolution law. In this chapter, we first motivate the
statistical approach in the study of a transformation or flow. We then insist on the fact
that not all invariant measures give the same amount of information, and we present some
of the most important ones. In a second time, we focus on the particular case of hyperbolic
dynamics, more precisely Anosov maps and flows, and we describe the properties of the
above mentioned invariant measures. We also present various ways these measures can be
constructed, in particular through a functional approach. This last method can also give
asymptotic expansions from which we can deduce the rate of mixing. Finally, we present
the contributions of this thesis.

1.1 Motivations

The idea that a dynamical system derived from classical mechanics is not subject to
statistical properties goes back to Laplace and is based on the fact that the motion of such
a system is uniquely determined once initial conditions are given. However, in practical
terms, the initial conditions are never known with perfect accuracy, and it is therefore the
motion of a neighbourhood of the initial condition, a cell, in the phase space that must be
studied, where each point of the cell moves accordingly to given differential equations (of
motion). More generally, one could be tempted to consider other flows than Hamiltonian
ones, or even to consider discrete time dynamics through iteration of a map. This is the
settings we will consider. We say that the trajectory of a point x is stable if for every ε > 0
there is δ > 0 such that for all large enough time t, the image of the δ-neighbourhood of x
by the time t of the motion is contained in the ε-neighbourhood of the point xt, image of
x after a time t. Clearly, the motion of a cell containing a point whose trajectory is stable,
is well described by the motion of this point. Now, for some transformations – even for
some conservative ones, that are very easy to describe, see Example 1.1.1 – cells having
initially a regular form become distorted, take intricate form, and distribute themselves
into complicated shapes in the phase space.
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Example 1.1.1. One of the most famous, and simplest, example of chaotic map is the

so called Arnold’s cat map. It is obtained by letting the matrix A =
(

2 1
1 1

)
acts on the

two-torus T2 = R2/Z2 As shown in Figure 1.1, the image after a single iteration of the

Figure 1.1 – The picture on the left represents a cell with the shape of a cat inside a
fundamental domain of the torus. The picture on the right represents the action of A on the
fundamental domain in the plane, as well as the image of the cell inside a single fundamental
domain (the image is taken from Arnold’s book).

initially cat-shaped cell no longer looks like a cat at all. One can easily imagine that the
situation can only get worse with more iterations.

Clearly, the spreading of those cells comes from instabilities, that is, arbitrarily close
points eventually diverge and seem to move independently. We arrive at the idea that,
for unstable motions, trajectories should present statistical properties, although they are
deterministic.

1.1.1 Statistical description of orbits

By statistical description of an orbit, we mean its asymptotic distribution. More precisely,
given a continuous self map T : X → X of a metrizable space X, and a subset U ⊂ X,
we are interested in the number of visits to the set U under the first n iterates of a point
x ∈ X, that is, in the sequence

FU (T, x)n = #{i ∈ [0, n− 1] | T i(x) ∈ U}
n

= 1
n

n−1∑
i=0
1U ◦ T i(x) .

Instead of considering discontinuous observables, such as 1U , it is preferable to consider
continuous ones. Indeed, from the Riesz representation theorem, the set of Borel measures
over X can be identified to the topological dual of the continuous functions (C0(X))∗.
Furthermore, given x ∈ X, the map associating to each ϕ ∈ C0(X) its Birkhoff average

Ix(ϕ, n) = 1
n

n−1∑
i=0

ϕ ◦ T i(x) is linear. Thus, if for all ϕ, Ix(ϕ, n) converges, then there exists
a measure µx such that

lim
n→∞

Ix(ϕ, n) =
∫
ϕdµx

and since Ix(1, n) = 1 for all n, we get that µx(X) = 1, that is µx is actually a probability
measure. Notice that since n(Ix(ϕ ◦ T, n) − Ix(ϕ, n)) is bounded, the limits (when they
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exist) associated to ϕ ◦ T and ϕ coincide, thus for any Borel set A ⊂ X, T∗µx(A) :=
µx(T−1A) = µx(A), that is µx is a T -invariant measure.

Two natural questions appear:
i) Does such a point x exist?
ii) If µ is a T -invariant measure, is there a point x such that µx = µ?

To give a positive answer, we proceed as follows: from the Krylov–Bogolubov theorem,
there exists a T -invariant measure µ. Using the Birkhoff ergodic theorem, for all ϕ ∈
L1(X,µ), Ix(ϕ, n) admits a limit for µ-almost every x. Since X is compact, there exist
a sequence (ϕi)i∈N of continuous functions that is dense in C0(X). Let x be such that
Ix(ϕi, n) converges for all i. Then, for any ϕ ∈ C0(X), Ix(ϕ, n) is a Cauchy sequence, and
hence converges. Now for the second question, we repeat the same construction starting
from an ergodic measure µ, where a measure is said to be ergodic if it is irreducible in
the sense that for all T -invariant Borel set A, µ(A) is either 0 or 1. Ergodic measures are
extremal points of the set of invariant measures, and thus always exist. In this case, the
limit of Ix(ϕ, n) is equal to

∫
ϕ dµ for µ-almost every x.

The fact that both i) and ii) have positive answers justifies the statistical approach.
If µ is a T -invariant measure, the above discussion on the chaotic evolution of a cell can
be quantified: µ is said to be mixing if for all Borel sets A and B, then µ(A ∩ T−nB)
converges to µ(A)µ(B) when n goes to infinity. In other words the cell B spreads evenly
in the phase space, according to the measure µ.

1.2 Specific invariant measures and Entropy

Since a T -invariant measure is a fixed point of T∗, these measures are also important in
the study of T∗. We are thus trading a nonlinear problem in finite dimension, with a linear
problem in infinite dimensions: the action of the transfer operator T∗ on the Banach space
of measures (C0(X))∗. Since T∗ preserves the subset of probability measuresM(X), we
will restrict our attention to this subset. Furthermore, according to the previous section,
the relevant probability measures in the description of the behaviour of T are those that
are T -invariant.

From now on, by measure we mean probability measure. If µ is a T -invariant measure
we define

A(µ) := {ν ∈M(X) | ν � µ}.

The statistical behaviour of µ is related to the behaviour of T∗ on A(µ) as follows. The
measure µ is ergodic if and only if µ is the only fixed point of T∗|A(µ), while µ is mixing if
and only if µ is an attractive fixed point of T∗|A(µ).

Now, not all invariant measures are relevant in the study of T . For example, if T
admits a periodic point x of period n, then the measure 1

n

∑n−1
i=0 δT i(x) is T -invariant (and

in fact ergodic) and describes perfectly the behaviour of the point x, but it gives very few
information on the rest of the phase space (except if x is an attractive fixed point).

1.2.1 Smooth invariant measures and physical measures

In classical mechanic, the differential equations of motion can be integrated into a flow
which preserves a volume measure. Many other natural flows or transformations are in
this situation, and this smooth measure is often the most studied one. Notice that the
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ergodic theorem then holds Lebesgue-almost everywhere. If such a measure is ergodic, it is
then the unique invariant measure equivalent to Lebesgue.

Nonetheless, some systems are sometimes deprived of smooth measures. It is then
tempting to find whether there exist measures with similar properties one expects from a
smooth measure. Physical measures are those for which the ergodic theorem holds on a set
of positive Lebesgue measure.

1.2.2 Entropy and Measures of maximal entropy

In 1958, taking inspiration from Shannon information theory, Kolmogorov [Kol58] intro-
duced a quantity associated to each invariant measure: the Kolmogorov–Sinai entropy
hµ(T ). This quantity is particularly important for many reasons, one is that the entropy is
a conjugacy invariant. We recall briefly the definition of hµ(T ). Given a finite partition
ξ = {A1, . . . , An} of X into measurable sets, define its static entropy by

Hµ(ξ) = −
∑
A∈ξ

µ(A) logµ(A).

If ξ1 and ξ2 are two partitions, define the join partition ξ1 ∨ ξ2 to be the partition of X
into sets of the form A ∩ B, where A ∈ ξ1 and B ∈ ξ2. Since T−1ξ is a finite partition
whenever ξ is a finite partition, define ξn = ξ ∨ T−1ξ ∨ · · · ∨ T−n+1ξ. Then the sequence
logHµ(ξn) is subadditive, and therefore 1

n logHµ(ξn) converges to a limit called hµ(T, ξ).
Finally, define the entropy of µ to be

hµ(T ) := sup{hµ(T, ξ) | ξ is a finite partition into measurable sets} .

Morally, this quantity describes the complexity of T perceived by µ. In this sense, it is
therefore natural to investigate the measures with maximal entropy, that is measures µMME

such that hµMME(T ) = sup{hµ(T ) | µ ∈M(X), T∗µ = µ}.
When T is a continuous map, then the following equality holds

htop(T ) = sup{hµ(T ) | µ ∈M(X), T∗µ = µ}

and is called variational principle. Here htop(T ) is the topological entropy of T , and is
equal to the pressure (see the next subsection) of the zero potential.

Unfortunately, existence of such measures µMME is far from being automatic. Indeed, al-
thoughM(X) is a compact set, the map µ 7→ hµ(T ) is usually not continuous. Nonetheless,
in 1972, Bowen proved that if T is expansive, that is, if

∃ε > 0 ∀x, y ∈ X
[
d(T i(x), T i(y)) < ε , ∀i ∈ Z⇒ x = y

]
,

then µ 7→ hµ(T ) is upper-semicontinuous [Bow72a]. This regularity is sufficient to ensure the
existence of measures of maximal entropy. Still, ergodicity does not insure the uniqueness
as in the case of smooth measures (in fact, when T is continuous and the set of measures
of maximal entropy is not empty, at least one of those measures must be ergodic).

In 1974, Bowen introduced the specification property [Bow75] and proved that, in
addition with expansiveness, it ensures the uniqueness of the measure of maximal entropy.

We now give some explicit examples of dynamics, either maps of flows, for which the
measure of maximal entropy exists, is unique and is clearly identified.
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Example 1.2.1. Let m > 2 be an integer. Define Em on the circle S1 = R/Z by

Em(x) = mxmod 1.

The topological entropy of Em is equal to logm. Furthermore, the Lebesgue measure is
Em-invariant, and its entropy is logm. This is the only measure of maximal entropy of
Em.

Example 1.2.2. Let A be a finite set. We call A an alphabet. Define the set of bi-infinite
words Ω = AZ and the shift σ : Ω→ Ω by σ((xi)i∈Z) = (xi+1)i∈Z. Then for any stochastic
matrix M of size #A and any vector ν with positive coefficients νi such that νTM = νT and∑

i νi = 1, one can construct a σ-invariant measure µP,ν , called a Markov measure. By a
simple computation, one get hµP,ν (σ) = −

∑
i,j νiMi,j logMi,j. This quantity is maximized

in the special case νi = Mi,j = 1/#A, for all i, j ∈ A. In this case µP,ν = ν⊗Z – where
ν is seen as a measure on A – and its entropy is equal to log #A, which coincides with
the topological entropy of σ. One can prove that this measure is the unique measure of
maximal entropy.

Example 1.2.3. Given a matrix A of size n× n, with n = #A, whose coefficients Aij are
in {0, 1}, define the subshift of finite type to be σ restricted to the invariant subset

ΩA = {(xi)i∈Z | ∀i ∈ Z, Axixi+1 = 1}.

Denote the restriction of σ to ΩA by σA. If there exists N such that every coefficient of AN

is positive, then the topological entropy of σA is equal to log ρ(A), where ρ(A) is the spectral
radius of A. Furthermore, there exists a unique measure µA, called the Parry measure,
with hµA(σA) = log ρ(A). This measure can be explicitly constructed from left and right
eigenvectors of A associated to the eigenvalue ρ(A).

Example 1.2.4. As in Example 1.1.1, one can construct hyperbolic automorphisms of T2

from any matrices A ∈ Mn(Z) with determinant ±1 and trace strictly larger than 2 (in
absolute value). In this case, such A has two distinct real eigenvalues λ > 1 and λ−1. One
can compute the topological entropy of the map induced by A to be equal to log λ. One can
also prove that the Lebesgue measure is invariant and has entropy also equal to log λ. It is
the only measure of maximal entropy.

Example 1.2.5. In the case of the geodesic flow on a compact surface of constant negative
curvature, the volume measure coincides with the measure of maximal entropy.

1.2.3 Pressure and Equilibrium measures

In the case of symbolic dynamic, and later for continuous transformations, Ruelle introduced
in 1972 [Rue73] a quantity generalizing the notion of topological entropy: the (topological)
pressure. This quantity has then be studied in the general case by Walters [Wal75]. We
recall briefly the definition of the pressure P∗(T, g) associated to a potential g : X → R.

First, define the Bowen dynamical distance dn to be such that for all x and y ∈ X,

dn(x, y) = max
06i6n

d(T i(x), T i(y)) .
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Given some ε > 0, we say that a set E ⊂ X is (n, ε) separated if for all distinct points x
and y ∈ E, dn(x, y) > ε. Define the Birkhoff sum of g to be Sng =

∑n−1
i=0 g ◦ T i, and

P∗(T, g, ε, n) := sup{
∑
x∈E

eSng(x) | E is (n, ε) separated} ,

P∗(T, g, ε) := lim sup
n→∞

P∗(T, g, ε, n) ,

P∗(T, g) := lim
ε→0

P (T, g, ε) ,

where the last limit exists because ε 7→ P∗(T, g, ε) is nonincreasing (the limit could be ∞).
Define the topological pressure of T under the potential g to be P∗(T, g). This quantity
satisfies two remarkable results.

Theorem 1.2.6. [Wal82, Theorems 9.10, 9.11] Assume that T : X → X is a continuous
map on a compact metrizable set X. Then
i) P∗(T, ·) determines the set of invariant measures M(X,T ): if µ is a finite, signed
measure, then µ ∈M(X,T ) iff for all g ∈ C0(X),

∫
X g dµ 6 P∗(T, g);

ii) for all continuous g, P∗(T, g) = P (T, g) := sup{hµ(T ) +
∫
g dµ | µ ∈M(X,T )}.

In analogy with the case g = 0, ii) is also called variational principle, and the measures
(if they exist) achieving the sup are called equilibrium measures (or equilibrium states).
Here again, the existence of such measures is not always guaranteed. However, using again
Bowen’s results, if T is expansive, then µ 7→ hµ(T ) +

∫
g dµ is upper-semicontinuous (since

the first term is, and the second term is continuous by definition of the weak-∗ topology),
thus, there exist equilibrium states.

In the next section, we will see that, for some transformations T , all the above mentioned
invariant measures are equilibrium states.

1.3 The case of the Hyperbolic Dynamic

A particularly important and extensively studied class of systems is the family of hyperbolic
dynamical systems. The interest in those dynamics goes back at least to the work of
Hadamard [Had98] on the geodesic flow on negatively curved surfaces. A crucial point
in the history of their study is the axiomatic definition given by Anosov of the flows and
diffeomorphisms that now bear his name. The introduction of this definition was motivated
by the study of the dynamical properties of the geodesic flow on the unit cotangent bundle
of a Riemannian manifold of negative (a priori non-constant) sectional curvature. Research
in this area has subsequently been very active and, although there are still unanswered
questions, the understanding of hyperbolic dynamics has greatly improved since Anosov’s
early work, in particular through the development of many tools. Among these, we can
mention Markov partitions, coupling arguments, Young towers, etc. One approach that
has been particularly developed in recent decades is the one using functional analysis. This
approach is particularly suitable for generalizations for dynamics whose hyperbolicity is
weaker than the one defined by Anosov. It is from this approach that the results presented
in this thesis are derived.

We start by recalling the definition of an Anosov diffeomorphism

Definition 1.3.1. Let M be a compact manifold and T : M →M be a C1 diffeomorphism.
We say that T is an Anosov diffeomorphism if, for every x ∈M there is a splitting of the
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tangent space of M at x
TxM = Eux ⊕ Esx ,

and there are constants C > 0, Λ > 1 and a smooth Riemannian metric on M such that

(i) for every x ∈M , and ∗ ∈ {s, u}, we have DxT (E∗x) = E∗T (x);

(ii) for every x ∈M , v ∈ Eux and n ∈ N, we have |DxT
−n(v)| 6 CΛ−n|v|;

(iii) for every x ∈M , v ∈ Esx and n ∈ N, we have |DxT
n(v)| 6 CΛ−n|v|.

An example of such diffeomorphism is given in Example 1.1.1. Actually, any matrix
A ∈ SL(2,Z) with no eigenvalue of modulus 1 induces an Anosov diffeomorphism on the
torus R2/Z2, as in Example 1.2.4.

The definition of Anosov flows is obtained by modifying the above definition as follows:
a flow (φt)t∈R, generated by a zero-free vector field X, is said to be Anosov if for each
x ∈ X there is a splitting TxM = E0

x ⊕ Eux ⊕ Esx, such that E0
x is the span of X(x), and

Eux , Esx respectively satisfy (ii) and (iii) with T replaced by φ1, and n by t > 0.

1.3.1 The Ruelle–Perron–Frobenius transfer operator

There are many different approaches to the construction of the measures discussed in
Subsection 1.2. In the case of smooth invariant measures in the setting of Anosov maps, the
first construction was performed by Sinai, Bowen and Ruelle [Bow08]. For this reason, these
measures are called SRB measures. Their construction starts by proving the existence of a
finite Markov partition, and of a (Lipschitz) semiconjugacy map between the hyperbolic
diffeomorphism and a subshift of finite type. The next step is to exploit the fact that the
SRB measure is the equilibrium state associated to the potential g = − logDT |Eu . In the
uniformly hyperbolic case, g is at least Hölder continuous by the theory of Hirsch–Pugh–
Shub [HPS77]. Lifting this weight to the subshift of finite type produces a Hölder potential.
The results on transfer operators developed in the case of symbolic dynamics yield an
equilibrium state, which is exponentially mixing for Hölder observables if the subshift is
topologically mixing. The drawback of this method is that a lot of information is lost while
going to the symbolic setting (the maximal smoothness there is only Lipschitz).

Actually, one could avoid the coding step by considering directly the action of the
transfer operator T∗. The construction of an SRB measure from this method arises
from the following heuristics. If T admits an SRB measure which is equivalent to the
Lebesgue measure λ, the action of T∗ can be restricted to A(λ). Therefore, for each
µ = ρλ ∈ A(λ), we have T∗(ρλ) =

(
ρ
JT ◦T

−1
)
λ. It is then natural to consider the so called

Ruelle–Perron–Frobenius operator L : L1(M,λ)→ L1(M,λ) defined by

L(ρ) = ρ

JT
◦ T−1 . (1.3.1)

Notice that ||L(ρ)||L1(M,λ) = ||ρ||L1(M,λ). Now, if there exists a nonnegative ρ such
that L(ρ) = ρ, normalized so that

∫
ρdλ = λ(ρ) = 1, then the measure µ defined by

µSRB(ϕ) = λ(ϕρ)
λ(ρ) is T -invariant since

λ(ρ)(T∗µ)(ϕ) =
∫
ϕ ◦ Tρdλ =

∫
ϕ ◦ Tρd(L∗λ) =

∫
L(ϕ ◦ Tρ) dλ

=
∫
ϕL(ρ) dλ =

∫
ϕρ dλ = λ(ρ)µ(ϕ)
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where in the second equality we used that λ is a left eigenvector of L associated to the
eigenvalue 1 (which is a consequence of the change of variable formula). In this sense, we
have paired left and right eigenvectors associated to the maximal eigenvalue of L in order
to construct the invariant measure µSRB. This method of constructing invariant measure
by pairing eigenvectors will be used in the next subsection where the operator L will be
equipped with a different weight.

Furthermore, since∫
ϕ ◦ Tnψ dµ−

∫
ϕdµ

∫
ψ dµ =

∫
ϕ
(
Ln(ψρ)− ρ

∫
ψρdλ

)
dλ,

the rate of mixing is governed by the decay to zero of Ln(φ)− ρ
∫
φ dλ. When 1 is a simple

eigenvalue of L, then φ 7→ ρ
∫
φ dλ is the spectral projection to the eigenspace spanned by

ρ. Therefore, the spectral theory of L also gives information on the rate of mixing of µSRB.

It turns out that finding such an eigenvector ρ is usually not that easy and some more
involved work has to be done. This issue have been much studied in the last decades and
the solution essentially consists in introducing well chosen Banach spaces of distributions
on which L acts (after being extended). Actually, there are many different constructions for
those Banach spaces [BKL02,GL06,BCFT18,Bal18]. These constructions (almost all) rely
on finding two anisotropic norms, a strong one || · || and a weak one || · ||w, on Cr(M,R) for
some r ∈ [1,+∞]. These norms are distributional norms that satisfy || · ||w 6 || · || 6 || · ||Cr .
The strong norm is anisotropic, in the sense that, for ϕ ∈ Cr(M,R), ||ϕ|| measures the
regularity (in a classical sence) of ϕ in the stable directions, while it measures the regularity,
in a distributional sense, of ϕ in the unstable directions. In view of using functional analysis
techniques, it is more convenient to work with Banach spaces. Therefore, let B and Bw be
the completions of Cr(M,R) with respect to the norms || · || and || · ||w. These spaces are
the ones on which we want to study the action of L. To do so, we first need to extend the
transfer operator onto these Banach spaces. A convenient way to do so is to find || · || and
|| · ||w so that

Cr(M,R) ↪→ B ↪→ Bw ↪→ (Cr(M,R))∗ , (1.3.2)

where the first two injections are the canonical maps, the second map is compact, and the
third embedding is obtained by extending ϕ 7→ ϕλ. In this case, we can see the elements
of B and Bw as distributions and extend L on (Cr(M,R))∗ by setting

L(f)(ψ) = 〈ψ ◦ T, f〉 , ψ ∈ Cr(M,R).

Notice that it is indeed an extension, since for f ∈ Cr(M,R), we get

L(fλ)(ψ) =
∫
fψ ◦ T dλ =

∫
f

JT
◦ T−1ψ dλ =

( f

JT
◦ T−1λ

)
(ψ),

and by the identification f 7→ fλ, L takes the form (1.3.1) on smooth function.

Every construction of anisotropic Banach spaces, in this context, has in mind that L
should be quasi-compact, in the sense that,

Definition 1.3.2. For a given bounded linear operator L from a Banach space B to itself,
the essential spectral radius ress(L) is the infimum of the r > 0 such that the intersection of
the spectrum σ(L) with the disc {z ∈ C | |z| > r} is comprised of finitely many eigenvalues
with finite algebraic multiplicities. We say that L is quasi-compact if the essential spectral
radius of L is strictly smaller than its spectral radius r(L).
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A way to prove that L is quasi-compact is to exploit the weak space, and to show that
L satisfies a Lasota–Yorke type inequality, that is

Definition 1.3.3. We say that the operator L satisfies the Lasota–Yorke inequality if there
exist 0 < θ < r(L) and constants A and B such that for all n > 0 and all f ∈ B,

||Ln(f)|| 6 Aθn||f ||+B||f ||w .

The case where θ = r(L) and B = 0 should be thought as a degenerated case.

According to the work of Hennion [Hen93], after a spectral formula due to Nuss-
baum [Nus70], if L satisfies such inequality for some θ < r(L), then ress(L) 6 θ and thus
L is quasi-compact.

First, the peripheral spectrum of L has to be investigated. It is made of finitely many
eigenvalues λ1, . . . , λK with modulus equal to the spectral radius of L, with λ1 = 1. Let Πi

be the spectral projection onto the eigenspace associated to λi. These projectors are well
defined operators from B to itself with a finite dimensional ranges, and for all f ∈ B, Πi(f)
can be extended into a signed measure onM . In fact, the projector can be explicitly written
as the limit of the averaged action of λ−ni Ln. Letting µ = Π1(1), one can show that all
measures in the range of some Πi are absolutely continuous with respect to µ. In fact, from
the characterisation of Π1, µ is the limits of 1

n

∑n−1
k=0(T k)∗λ, which is another (equivalent)

definition of the SRB measure, so that µSRB = µ. One can construct finitely many ergodic
measures from a basis of the range of Π1 such that they are the ones appearing in the
ergodic decomposition of µ. In particular, we get that µ is ergodic if and only if the range
of Π1 is one-dimensional. In the case of Anosov diffeomorphism, a sufficient condition for 1
to be a simple eigenvalue of L is that T is topologically transitive. Moreover, µ is mixing if
and only if the peripheral spectrum of L is reduced to the simple eigenvalue 1. Still in the
case of an Anosov diffeomorphism, a sufficient condition for that is the topological mixing
property of T .

As above, we can write µ as a pairing of left and right eigenvectors of L. Indeed, let
e1 be the element of (Cr(M,R))∗∗ defined by e1(f) = 〈1, f〉 for f ∈ (Cr(M,R))∗. We get
that

L∗(e1)(f) = 〈f,L∗e1〉 = 〈Lf, e1〉 = 〈1,Lf〉 = 〈1, f〉 = e1(f).

Hence e1 is a left eigenvector of L associated to the eigenvalue 1. Pairing the left and right
eigenvectors of L associated to 1, we get

e1(ϕµ)
e1(µ) = µ(ϕ)

µ(1) = µ(ϕ) , ϕ ∈ C0(M,R).

In the case where µ is mixing, the rest of the spectrum of L gives rise to an asymptotic
expansion of the correlation functions. Actually, in [BKL02, GL06, BCFT18, Bal18] it
is not only two Banach spaces that are constructed but an infinite family (ordered by
smoothness), giving better estimates on the essential spectral radius of L the smoother T
is. More precisely, if T is chosen to be C∞, we can find Banach spaces so that the constant
θ from the Lasota–Yorke inequality is arbitrarily small. In other words, given any ε > 0,
there is a Banach space B such that ress(L) < ε, and thus, letting (γj)16j6D be the distinct
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eigenvalues of L of modulus larger than ε, with γ1 = 1, there exists κ > 1, and we can
write

L(ϕ) =
D∑
j=1

(γjId +Nj)Πj(ϕ) +R(ϕ) , ϕ ∈ B , (1.3.3)

where R has a spectral radius smaller than ε, the Πj are finite rank projections (ΠjΠk =
δjkΠj), and the Nj are finite rank operators such that ΠjNk = NkΠj = δjkNk and
(Nj)κ = 0 (nilpotence). In addition,

ΠjR = RΠj = NjR = RNj = 0 , NjNk = δjk(Nj)2.

Thus, we get that

Ln(ϕ) =
D∑
j=1

(γjId +Nj)nΠj(ϕ) +Rn(ϕ) =
D∑
j=1

γnj

(
κ∑
l=0

(
n

l

)
γ−lj N

l
j

)
Πj(ϕ) +Rn(ϕ).

Since we assumed that γ1 = 1 is simple, N1 = 0 and Π1(ϕ) = e1(ϕ)µ. Thus, for any ϕ and
ψ ∈ Cr(M,R), with r large enough, we get

∣∣∣ ∫ ϕ ◦ Tnψ dµ−
∫
ϕdµ

∫
ψ dµ−

D∑
j=2

γnj

(
κ∑
l=0

(
n

l

)
γ−lj N

l
j

)
Πj(ψµ)(ϕ)

∣∣∣ (1.3.4)

=
∣∣∣〈ϕ ◦ Tn, ψµ〉 − e1(ψµ)µ(ϕ)−

D∑
j=2

γnj

(
κ∑
l=0

(
n

l

)
γ−lj N

l
j

)
Πj(ψµ)(ϕ)

∣∣∣ (1.3.5)

=
∣∣∣〈ϕ,Ln(ψµ)〉 −Π1(ψµ)(ϕ)−

D∑
j=2

γnj

(
κ∑
l=0

(
n

l

)
γ−lj N

l
j

)
Πj(ψµ)(ϕ)

∣∣∣ (1.3.6)

=
∣∣∣Ln(ψµ)(ϕ)−

D∑
j=1

γnj

(
κ∑
l=0

(
n

l

)
γ−lj N

l
j

)
Πj(ψµ)(ϕ)

∣∣∣ (1.3.7)

=
∣∣∣Rn(ψµ)(ϕ)

∣∣∣ 6 C|ϕ|Cr |ψ|Cr ||µ|| εn. (1.3.8)

In other words, the spectral theory of L gives an asymptotic expansion of the correlation
between ϕ and ψ.

Finally, one can prove that µ is the equilibrium state associated to the potential
− log JuT , by using the operator L in order to get a sharp upperbound on Bowen balls
of small radius, involving the Birkhoff sum of the potential as well as its pressure. Using
Brin–Katok’s theorem, we relate these measures to the entropy of µ, proving that µ is such
that P (T,− log JuT ) = hµ(T )−

∫
log JuT dµ.

1.3.2 Weighted transfer operators

By analogy with the case of symbolic dynamic (see e.g. [Bow08]) where the equilibrium
state of a potential φ is constructed from the pairing of left and right eigenvectors of the
weighted transfer operator

(Lφf)(x) =
∑

y∈σ−1x

eφ(y)f(y)
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we wish to do the same directly for T . We then define the weighted transfer operator, with
weight g,

L̃g(f) :=
(
egJuT

f

JT

)
◦ T−1 , f ∈ Cr(M,R) .

The unstable Jacobian appears here so that for g = − log JuT , we recover the operator
from the previous section. Yet, this operator can be slightly simplified since JT (x) =
JsT (x)JuT (x)E◦T (x)

E(x) , where E(x) is the sin of the angle between the stable and the
unstable bundles Es and Eu at x. Then, replacing g by g − logE ◦ T + logE, which are
cohomologous and should give rise to the same equilibrium states, we finally define

Lg(f) :=
(
eg

f

JsT

)
◦ T−1 , f ∈ Cr(M,R) . (1.3.9)

The principal problem here is that, for smooth potential g, the function 1/JsT is not
smooth. The initial solution provided by Gouëzel and Liverani [GL08] was slightly different.
They still consider a weighted transfer operator acting on an anisotropic space obtained
as a completion, however, the space to be completed is radically different from a space of
smooth functions. Indeed, they considered the space of Cr−1 sections of the line bundle
over G, where G is the Grassmannian of the oriented ds-dimensional subspace of the tangent
bundle TM , with ds the dimension of the stable bundle Es. The transfer operator they
used also has a weight, but there is no JsT in it. The rest of their analysis also consists in
proving the Lasota-Yorke inequality, and then to study the peripheral spectrum. Pairing
left and right eigenvectors associated to the eigenvalue equal to the spectral radius gives
rise to an invariant measure. This measure is proved to be the expected equilibrium state
by controlling the measure of Bowen balls.

In dimension two, another way to bypass this difficulty is provided by Demers [Dem21]
and consists in making use of the SRB measure. For now, only the measure of maximal
entropy, corresponding to g = 0, has been constructed, but it might be possible to adapt
the construction to more general potential g through heavier computations. The starting
point is to replace the identification f 7→ fλ by f 7→ fµSRB, so that the extension of L0 to
the dual is formally

L0(f)(ψ) =
〈
ψ ◦ T
JsT

, f

〉
.

The spaces B and Bw are then obtained by completing C1(M,R) with respect to norms
|| · || and || · ||w. The choice of these norms leads to the embedding (1.3.2) (where the second
one is compact), except for the last one where the dual of C1(M,R) must be replaced
by the dual of Cα(Ws), the space of functions which are α-Hölder along pieces of stable
manifolds. In this setting, L0 can be extended to operators from B to itself, as well as
from Bw to itself. Furthermore, L0 satisfies Lasota–Yorke type inequalities on both spaces
(the one on Bw is of the degenerated type). As it is now usual, an invariant measure µ0 is
obtained by pairing left and right eigenvectors of L0. Thanks to its particular structure,
the µ0-measure of Bowen balls is sharply controlled, which in particular implies that µ0
is a measure of maximal entropy. Furthermore, uniqueness of such maximal measure is
proven, as well as a spectral gap for L0. Thanks to this gap, a similar expansion as in
(1.3.4) gives exponential mixing for C1 observables.

It has to be noted that the construction from [Dem21] was done in the more general
context of piecewise hyperbolic maps (in dimension two) with bounded derivative.
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1.4 Main results, in contexts

This thesis is essentially divided into two parts (of unequal length). The first one is devoted
to give an alternative proof of the absence of the deviations of the ergodic integrals of
Giulietti–Liverani flows, while the second part is devoted to construct equilibrium states –
and in particular the measure of maximal entropy – for dispersive billiard flows.

1.4.1 Absence of Deviations for parabolic flows

In their paper [GL19], Giulietti and Liverani introduced a flow ht obtained by integrating
the one-dimensional stable foliation of an Anosov diffeomorphism F of the two-dimensional
torus T2. Similar flows have already been introduced in the past, and it is known since
the work of Furstenberg that the classical horocycle flow (associated to the geodesic flow
on a compact negatively curved surface) is uniquely ergodic. Using symbolic dynamics,
Furstenberg results have been extended by Marcus [Mar75a,Mar75b] to flows generated by
one-dimensional unstable foliation of an Anosov diffeomorphism or flow, and then with
Bowen [BM77] to higher dimensional foliation.

Giulietti and Liverani prove back that ht is uniquely ergodic, of invariant measure µs.
Then, they also show that ht is minimal and admits a transversal curve such that the first
return map has a rotation number of constant type. For a given Cr Anosov diffeomorphism
F , Giulietti and Liverani introduce a suitable Banach space B̃GL, on which acts the transfer
operator L̃ associated to F . For large enough r, they provide an asymptotic expansion of

Hx,T (f) :=
∫ T

0
f(ht(x)) dt , x ∈ T2, f ∈ Cr(T2,C), (1.4.1)

from eigenvectors of the dual operator L̃∗, associated to eigenvectors {ρ̃j}NGL
j=0 of modulus

strictly larger than the essential spectral radius ρ̃GL. The ρ̃j ’s are called Ruelle resonances,
and those of modulus strictly larger than 1 are called deviation resonances. The dominant
term of the expansion is given by Tµs(f), corresponding to the trivial deviation resonance
ρ̃0 = ehtop , where htop is the topological entropy of F . Furthermore, the error term of the
expansion is a negative power law.

In order to fix the ideas, we state the expansion in the simpler case where there are
no Jordan blocs (as in [Bal19, Eq. (1.2)]): For any δ > 0 there is a constant C and
{Cj(x, T )}NGL

j=1 with supx,T,j |Cj(x, T )| 6 C, such that for all f ∈ Cr(T2,C),

Hx,T (f) = Tµs(f) +
NGL∑
j=1

T θjCj(x, T )Oj(f ◦ π) +Rx,T (f) ,

where θj = log ρ̃j
htop

< 1, Oj ∈ B̃∗GL is an eigenvector of L̃∗ associated to the eigenvalue ρ̃j ,
and the rest satisfies

sup
x
|Rx,T (f)| 6 C

(
T θmin ||f ||Cr + sup |f |

)
, θmin = log ρ̃GL + δ

htop
< 0,

and π is the projection from the unit tangent bundle of T2 to T2.
Recently, Baladi [Bal19] and Forni [For20] provided independent proofs of the absence

of deviation resonances in the general case (with possibly Jordan blocs). Their proofs are
quite different: Baladi showed that F does not have non trivial deviation resonance using
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methods derived from dynamical determinants, while Forni used the action of the (pseudo-)
Anosov F on the first cohomology and proved that deviation resonances do not exists on
surfaces of genus one.

In Chapter 2, we give a short proof of a result implying the absence of deviation
resonances for Giulietti–Liverani flows. Actually, this result gives a logarithmic bound on
the growth of Hx,T (f) for more general flows:

Theorem 1.4.1. If ht is a C1 flow on the torus T2 without critical points nor periodic
orbits – in particular it admits a transversal curve γ and is uniquely ergodic of invariant
measure µ – and if the rotation number of the Poincaré first return map R to γ is of
constant type, then there exist constants K1 and K2 such that for any C1 observable f with∫
f dµ = 0, any x and any T > 0,

|Hx,T (f)| 6 K1||f ||C1 log(1 + T ) +K2||f ||C1

Furthermore, in the second part of Chapter 2, we give an explicit construction of a C1

flow ht on T2, renormalized by an Axiom A diffeomorphism fβ , satisfying the assumptions
of Theorem 1.4.1. By a renormalization, we mean that fβ ◦ ht = hλ−1t ◦ fβ, where here,
λ−1 < 1 is the uniform contraction factor of fβ associated to the stable foliation of its
hyperbolic set. In particular, we are able to compute the rotation number of the first
return map to a specific transversal section and we prove that it is a quadratic integer –
and thus, of constant type.

1.4.2 Equilibrium states and Measure of maximal entropy for billiard
flows

Chapters 3 and 4 are dedicated to the constructions of equilibrium states for the Sinai
billiard flow, and more specifically the measure of maximal entropy.

Dispersing billiards, as introduced by Sinai [Sin70], form a class of hyperbolic dynamical
systems with discontinuities and unbounded derivative at the singularities. It is then
natural to try to adapt the methods used in the context of Anosov dynamics to those
systems.

More precisely, a dispersing billiard – or (the quotient modulo Z2 of) two dimensional
periodic Lorentz gaz – is a set Q = T2 r B, where B = tDi=1Bi for some integer D,
and the Bi’s are disjoint closed domains, strictly convex with C3 boundaries. The Bi’s
are called scatterers. The billiard flow φt is the motion of a point particle travelling at
unit speed on Q and doing specular reflections off the boundary of the scatterers. By
identifying the incoming collisions with the outgoing ones in Ω = Q×S1, φt is a continuous
flow. Nonetheless, at grazing collisions – those tangential to a scatterer – the flow is not
differentiable, its derivative is actually unbounded at those singularities.

Notice that the boundary of the scatterers, after identification, M is a section for φt,
and when the first return time function τ is bounded φt is actually the suspension of the
first return map T to M under the time τ . The map T is called the collision map, and is
discontinuous at grazing collisions.

Since φt and T are derived from models from classical mechanic, they both preserve some
volume measures (which are SRB measures). It is by the mean of the those measures that
φt and T have first been extensively studied. Those measures are ergodic, K-mixing [Sin70,
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BS73,SC87], and even Bernoulli [GO74,CH96]. They also have stronger statistical properties.
Both are exponentially mixing [You98,DZ11,BDL18]. Chronologically, Young was the
first to prove the exponential mixing for the SRB measure of T . It was through the
development of a new technique: the Young towers. Only a year later, she introduced
again a new technique, borrowed from the probability theory: coupling, and derived again
the exponential mixing. Later on, Dolgopyat simplified this argument. Finally, Demers
and Zhang contructed anisotropic Banach spaces on which the transfer operator associated
to T is quasi-compact and has a spectral gap. The exponential mixing of the SRB measure
of the flow is a recent result, which also relies on the construction of anisotropic Banach
spaces of distributions.

Until very recently, only some perturbations of the SRB measure have been stud-
ied [CWZ17,DRBZ18], and not so much for other invariant measures.

Baladi and Demers [BD20] introduced Banach spaces such that the weighted transfer
opertor L0 – weighted so that the measures of maximal entropy are expected to be obtained
– satisfies (degenerated) Lasota–Yorke type inequalities. To do so, Baladi and Demers
need two technical assumptions: the first one is that the billiard must have finite horizon
in the sense that no orbit makes only grazing collisions – in particular, the return time
τ is bounded. The second assumption quantifies the recurrence of the singular set: for
ϕ0 . π/2, we say that a collision is ϕ0-grazing if the angle it makes with the normal
to the scatterer is greater (in absolute value) than ϕ0. For all ϕ0 and n0 > 1, define
s0 = s0(n0, ϕ0) to be the maximal frequency of ϕ0-grazing collisions in n0 consecutive
collisions. The sparse recurrence assumption from [BD20, Eq. (1.5)] is then

∃ϕ0 , n0 , h∗ > s0 log 2,

where h∗ is a quantity which coincides with the topological entropy as defined by Bowen.
Although L0 is not a priori quasi-compact, Baladi and Demers managed to construct

left and right eigenvectors of L0 associated to the eigenvalue eh∗ . They show that by pairing
these vectors, one obtains a Radon measure µ∗, that is K-mixing, Bernoulli, adapted and
has maximal entropy. Finally, they prove that µ∗ is the unique measure of maximal entropy
of T .

The decay of correlation for µ∗ have then been studied by Demers and Korepanov [DK22].
They prove that the mixing is polynomial for Hölder observables, as well as the Central
Limit Theorem.

Using similar spaces as in [DZ11], Baladi and Demers [BD22] constructed equilibrium
states µt for each potential −t log JuT , 0 < t < t∗, for some determined constant t∗ > 1.
Here again, the construction relies on the study of a weighted transfer operators Lt acting
on anisotropic Banach spaces of distributions. In this case, for each t, Lt satisfies a
Lasota–Yorke type inequality, hence Lt is quasi-compact. Baladi and Demers then prove
that Lt has a spectral gap, which in particular implies that µt has exponential mixing.

In this thesis (Chapter 3), we construct equilibrium states associated to piecewise
Hölder potentials g satisfying additional assumptions. To do so, we use the same spaces B
and Bw as in [BD20]. The transfer operator used is defined first on C1 functions by

Lg(f) :=
(
eg

f

JsT

)
◦ T−1.
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We also introduce a definition of topological pressure P∗(T, g) which coincides with the one
formulated by Bowen. In the case g = 0, this quantity coincides with h∗ used in [BD20].

Recalling Λ = 1 + 2κminτmin > 1 the minimal expansion factor of T , we can state our
first result on the Sinai billiard flow as follows.

Theorem 1.4.2. If g is a piecewise Hölder potential such that P∗(T, g)− sup g > s0 log 2
and log Λ > sup g − inf g, then there exists a unique equilibrium measure µg. Furthermore
µg is Bernoulli, T -adapted and has full support.
When h∗ > s0 log 2, there exists a neighbourhood of the zero potential satisfying the above
assumptions.

We also introduce two technical assumptions, SSP.1 and SSP.2 – which stand for small
singular pressure – so that when the condition log Λ > sup g − inf g is replaced by SSP.1,
then the measure µg is only T -invariant and T -adapted. When log Λ > sup g − inf g is
replaced by SSP.2, then the conclusions of Theorem 1.4.2 hold.

Furthermore we prove that

Theorem 1.4.3. a) If g satisfies the conditions P∗(T, g)−sup g > s0 log 2 and SSP.2, then
in the coordinates of the suspension, the measure µ̄g = (µg(τ))−1µg ⊗ λ is a flow invariant
measure. Furthermore µ̄g is Bernoulli, flow-adapted and has full support.
b) The set of equilibrium measures of T under the potential −htop(φ1)τ is in bijection with
the set of measures of maximal entropy for φt.

Chapter 4 is dedicated to the proof of the existence of a measure of maximal entropy for
the billiard flow. As claimed in Theorem 1.4.3b), this is equivalent to prove that T admits
equilibrium measures under the potential −htop(φ1)τ . To do so, we rely on the fact that
t 7→ P∗(T,−tτ) + tτmin is decreasing and that P∗(T,−htop(φ1)τ) > 0. Therefore, assuming
htop(φ1)τmin > s0 log 2, we get that P∗(T,−tτ) + tτmin > s0 log 2 for all 0 6 t 6 htop(φ1).
Then, we bootstrap from Theorem 1.4.2 by considering the supremum t∞ of the t′ such
that for all 0 6 t 6 t′, −tτ has SSP.2. Thanks to Theorem 1.4.2, t∞ > 0. Finally, assuming
t∞ < htop(φ1) leads to a contradiction: using the Hölder inequality, we are able to construct
a t2 > t∞ which contradicts the maximality of t∞.

In other words, we prove

Theorem 1.4.4. If htop(φ1)τmin > s0 log 2, then there exists a unique measure of maximal
entropy for the billiard flow. Furthermore, it is Bernoulli, flow-adapted and has full support.
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Chapter 2

Logarithmic bounds for ergodic sums of certain flows on the
torus: a short proof

Abstract

This chapter contains the results of [Car22a](published in QTDS). We give a short
proof that the ergodic sums of C1 observables for a C1 flow on T2 admitting a closed
transversal curve whose Poincaré map has constant type rotation number have growth
deviating at most logarithmically from a linear one. For this, we relate the latter
integral to the Birkhoff sum of a well-chosen observable on the circle and use the
Denjoy-Koksma inequality. We also give an example of a nonminimal flow satisfying
the above assumptions.

2.1 Introduction

Since the work of Furstenberg [Fur73], it is known that the classical horocycle flow of
a compact surface of constant negative curvature is uniquely ergodic — it has only one
invariant Borel probability measure. This flow is related to a hyperbolic one, namely the
geodesic flow, in the sense that the horocycle orbits are the unstable manifolds for the
geodesic flow.

Using Symbolic Dynamics arguments (resp. equicontinuity of some functions), Marcus
[Mar75a] (resp. [Mar75b]) generalized this result to the flow generated by the orientable
one-dimensional unstable foliation of a connected basic piece of an Axiom A diffeomorphism
(resp. flow). Later, Bowen and Marcus [BM77] extended this result to the higher dimensional
strong stable or strong unstable foliation of a basic set for an Axiom A diffeomorphism or
flow.

In their pioneer work, Giulietti and Liverani [GL19] focused on the one-dimensional
stable foliation of a Cr Anosov diffeomorphism F of the two-torus, inducing a flow ht called
the Giulietti–Liverani (stable horocycle) flow (of F ). Giulietti and Liverani proved that

0. I thank S. Ghazouani for allowing me to use his idea for the proof and Y. Coudène for many useful
comments. Research supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 787304).
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this flow is uniquely ergodic, minimal and that it admits a closed transverse curve such
that the rotation number of the first return map to this curve is of constant type. For
more basic facts about this flow, see [Bal19, Appendix A].

For any continuous function f : T2 → C, any T > 0 and any x ∈ T2, define the
horocycle integral Hx,T (f) =

∫ T
0 f(ht(x)) dt. By unique ergodicity, we have for any such x

and f ,
lim
T→∞

Hx,T (f)
T

= µs(f) :=
∫
T2
f dµs,

where µs is the unique invariant probability measure of the flow ht.
For large enough r, Giulietti and Liverani introduce a transfer operator for F on some

suitable Banach space. Using eigenvectors of the dual operator associated to eigenvalues
with modulus larger than the essential spectral radius (Ruelle resonances), they give an
asymptotic expansion of Hx,T (f) [GL19, Theorem 2.8]. The dominant term is the term
Tµs(f), corresponding to the trivial resonance λ0 = ehtop , where htop is the topological
entropy of F . This expansion also involves a negative power law error term. A simpler
asymptotic expansion, in the case where all Ruelle resonances of the transfer operator have
trivial Jordan blocks, can be found in [Bal19, Equation (1.2)].

In their recent works, V. Baladi [Bal19] and G. Forni [For20] independently proved that
horocycle integrals (in the set-up from [GL19]) do not have deviations, in other words the
expansion is limited to the linear term with a bounded remainder. Their proofs are quite
different: V. Baladi proves the strong result that the map F does not have non-trivial
Ruelle resonance, while G. Forni uses the action of the (pseudo-)Anosov diffeomorphism on
the first cohomology — in the more general setting of surfaces of genus g > 1 (non-trivial
Ruelle resonances can appear only for g > 2).

In this chapter we give a new, much shorter, proof of the absence of deviations for
horocycle integrals by considering a slightly more general setting: we no longer assume
that the flow can be obtained from the stable foliation of an Anosov diffeomorphism.
Instead, we only assume that the flow can be recovered from the suspension of a circle
diffeomorphism whose rotation number is of constant type. In particular, these flows are
uniquely ergodic. For clarity, we call “ergodic integral” for this type of flows the quantity
defined as “horocycle integral” previously.

We give an elementary proof that the ergodic integral of a C1 observable along the
trajectory of such a flow on the two-torus grows at most logarithmically if the observable
has zero average with respect to the unique invariant measure of the flow. This is the
content of our main theorem (Theorem 2.2.2, corresponding to Theorem 1.4.1).

When comparing this estimate to the asymptotic expansion given by Giulietti and
Liverani [GL19, Theorem 2.8], this result gives a new proof of the absence of deviations for
the horocycle integral.

Finally, we prove that the class of flows we consider here is strictly larger than the class
of flows studied by Giulietti and Liverani by constructing a flow satisfying our assumptions
but which is not minimal — in contrast to all flows in [GL19]. This is the content of
Theorem 2.3.1.
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2.2 Main result

Given a flow ht on the two-torus, we call ergodic integral of an observable f : T2 → R at
x ∈ T2 and T > 0 the quantity Hx,T (f) :=

∫ T
0 f ◦ ht(x) dt.

Recall the following classical theorem — we give a short proof of this fact using results
from [KH95] in order to introduce notations for our main result. In particular the theorem
below gives a simple sufficient condition for a flow to be written as the suspension of a
circle diffeomorphism.

Theorem 2.2.1. If ht is a C1 flow on the torus T2 without critical points nor periodic
orbits, then there exists a smooth closed curve γ transverse to ht such that ht is smoothly
conjugated to the suspension of the first return map R : γ → γ.
Moreover, the flow ht is uniquely ergodic, with a unique invariant measure µ.

Recall that an irrational number is of constant type if the sequence (ak)k of its coefficients
in its continued fraction expansion is bounded. We can now state our main result, using
notations from the previous theorem.

Theorem 2.2.2. If ht is a C1 flow on the torus T2 without critical point nor periodic
orbit, and if the rotation number of the Poincaré first return map R is of constant type,
then there exist constants K1 and K2 such that for any C1 observable f with

∫
f dµ = 0,

any x and any T > 0,

|Hx,T (f)| 6 K1||f ||C1 log(1 + T ) +K2||f ||C1 .

More precise versions of that estimate in the case of Giulietti–Liverani flows can be
found in [Bal19] and in [For20]. The bound obtained by V.Baladi [Bal19] is much tighter —
but the proof is longer — while the estimate given by G.Forni [For20] applies to flows on
higher genus surfaces.

Proof of Theorem 2.2.1. By the Birkhoff recurrence theorem, any continuous transforma-
tion of a compact space has a recurrent point. Hence h1 has recurrent orbits. In particular
the flow ht also has recurrent points. By our assumptions on the flow, these orbits cannot
be periodic. Hence, by [KH95, Propositions 14.2.1 and 14.2.2] there exists a smooth closed
curve γ transverse to ht and parametrised by S1 such that every orbit of ht intersects γ.
We can therefore apply [KH95, Corollary 14.2.3] to get that ht is smoothly conjugated to
the suspension flow of the first return map R to γ. The conjugation is C1, since the change
of coordinates is (θ, t) 7→ ht(θ).

The map R : S1 → S1 is a C1 diffeomorphism of the circle which has no periodic point.
It is a classical result — see [CFS82, Theorem 3.3.5] — that R is uniquely ergodic, with
invariant measure ν, and that its rotation number is irrational. From this, we deduce that
ht is uniquely ergodic, with a unique invariant measure µ.

We can now give the proof of our main result.

Proof of Theorem 2.2.2. Suppose that the rotation number ω of R is of constant type. In
order to prove the estimate, we will compare the ergodic integral to the Birkhoff sum of an
appropriate function.

Let u : S1 → R+ be the first return time function to γ, and let f : T2 → R be a
C1-observable such that

∫
T2 f dµ = 0. By construction, γ is a smooth curve, uniformly
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transverse to the flow, hence the function u is of class C1. Define the C1 observable g on γ
by the formula

g(x) =
∫ u(x)

0
f ◦ ht(x) dt.

To estimate the ergodic integral of f by the Birkhoff sum of g under the map R, we
use the following lemma.

Lemma 2.2.3. For all x ∈ γ and T > 0 there exists n satisfying T
sup(u) − 1 6 n 6 T

inf(u)
and such that ∣∣∣∣∣Hx,T (f)−

n−1∑
k=0

g ◦Rk(x)
∣∣∣∣∣ 6 sup(u) sup |f |.

For all y ∈ T2 there is 0 6 τ < supu and x ∈ γ such that y = hτ (x) and

|Hx,T+τ (f)−Hy,T (f)| 6 sup(u) sup |f |.

Proof. We first determine n. Since inf u > 0, there exists n such that
n−1∑
k=0

u ◦ Rk(x) 6

T <
n∑
k=0

u ◦ Rk(x). Hence n inf u 6 T and (n+ 1) supu > T . Both estimates on ergodic

integrals then follow from the fact that ht(Rn(x)) = h
t+
∑n−1

k=0 u(Rk(x))(x) for all x ∈ γ and
all t ∈ R.

In order to conclude by applying the Denjoy–Koksma theorem [Her79, Theorem VI.3.1],
we also need the following lemma.

Lemma 2.2.4. If ω = [0, a1, . . . , ak, . . .] is of constant type, then for any integer n > 1 there

exists integers N and (n1, . . . , nN ) such that n− 1 =
N∑
k=0

nkqk, where pk
qk

= [0, a1, . . . , ak].

Furthermore, we can choose N < 4 log(n)/ log(2) and nk 6 B + 1 for all k, where B is a
bound on the coefficients (ak)k>1.

Proof. Since the sequence (qk)k>0 satisfies the recursion formula qk+1 = akqk + qk−1 with
q0 = 1 and q1 = a1, we get by induction that 2

k−1
2 6 qk. Therefore, there exists N such

that qN 6 n− 1 < qN+1 with the estimate N < 4 log(n)/ log(2).
Define inductively the sequences (rk)06k6N+1 and (nk)06k6N by rN+1 := n− 1 and the

Euclidean division rk+1 = nkqk+rk, with 0 6 rk < qk. Clearly, we get that n−1 =
N∑
k=0

nkqk

(because q0 = 1). By contradiction, suppose there exists k such that nk > B + 1. Then

rk+1 = nkqk + rk > (B + 1)qk + rk > ak+1qk + qk−1 + rk = qk+1 + rk.

Therefore rk+1 > qk+1, which is a contradiction. Hence nk 6 B + 1 for all k.

For completeness, we state the Denjoy–Koksma inequality:

Theorem 2.2.5 (Denjoy–Koksma inequality). Let f be a homeomorphism of the circle
with an irrational rotation number ρ(f). Let µ be a measure invariant by f , and let p/q be
such that gcd(p, q) = 1 and |qρ(f)−p| < 1/q. Then for all potential ϕ of bounded variation

and all x ∈ S1,
∣∣∣∣∣q−1∑
k=0

ϕ ◦ fk(x)− q
∫
ϕ dµ

∣∣∣∣∣ < Var(ϕ).
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Since g is C1, it is of bounded variation. In addition, the denominators (qk)k>0 associated
to ω satisfy the assumption |qkω− pk| < 1/qk for some integer pk coprime with qk. We can
therefore apply the Denjoy–Koksma theorem to g, R and any qk. Furthermore notice that,
by construction, g is of ν-average 0: indeed, let M = {(x, t) | x ∈ γ, t ∈ [0, u(x)]}/ ∼, with
(x, u(x)) ∼ (R(x), 0), be the space such that ht is conjugated with its unit speed vertical
flow. Let µ̄ be the image of µ by the conjugacy map. Thus, µ̄ is invariant by the vertical
flow and so it must be of the form µ̄ = 1∫

u dν̄ ν̄ ⊗ dt, where ν̄ is invariant under R. By
unique ergodicity of R, we have ν̄ = ν. Thus

0 =
∫
T2
f dµ =

∫
M
f(ht(x)) dµ̄(x, t)

= 1∫
udν

∫
γ

∫ u(x)

0
f(ht(x)) dt dν(x) = 1∫

udν

∫
g dν .

Fix x ∈ T2 and T > 0. By Lemma 2.2.3, there exist a point y ∈ γ and an integer n
from which we can estimate the ergodic integral of f at x and T with the Birkhoff sum
of R at y. In order to assume that n > 1, we assume that T > 2 supu (otherwise, the
theorem holds with K1 = 0 and some K2 > 0 depending only on u). By Lemma 2.2.4 we
can decompose n− 1 as a sum from which we deduce the equality

n−1∑
k=0

g ◦Rk(y) =
N∑
l=0

nl−1∑
m=0

ql−1∑
k=0

g ◦Rk

Rmql+
l−1∑
i=0

niqi
y

.
From the Denjoy-Koksma inequality, for all 0 6 l 6 N , all 0 6 m < nl and all y in γ,∣∣∣∣∣∣∣

ql−1∑
k=0

g ◦Rk

Rmql+
l−1∑
i=0

niqi
y


∣∣∣∣∣∣∣ < Var(g),

we deduce the estimate∣∣∣∣∣
n−1∑
k=0

g ◦Rk(y)
∣∣∣∣∣ 6 N(B + 1) Var(g) 6 4(B + 1) Var(g)

log 2 logn 6
4(B + 1) Var(g)

log 2 log T

inf(u) .

Hence the result,

|Hx,T (f)| 6 |Hx,T (f)−Hy,T−τ (f)|+
∣∣∣∣∣Hy,T−τ (f)−

n−1∑
k=0

g ◦Rk(y)
∣∣∣∣∣+

∣∣∣∣∣
n−1∑
k=0

g ◦Rk(y)
∣∣∣∣∣,

6
4BVar(g)

log 2 log T

inf(u) + 2 sup(u) sup |f | =: K̃1 log T + K̃2.

We can bound the total variation Var(g) by the product of the length of γ with ||g′||C0(γ).
By the definition of g, we get

||g′||C0(γ) 6 ||u′||C0(γ) ||f ||C0 + ||u||C0(γ)||df ||C0 sup
06t6||u||C0(γ)

||dht||C0 .

Notice that ||u′||C0(γ) and sup
06t6||u||C0(γ

||dht||C0 only depend on the flow ht and on γ. Hence

there exist constants K1 and K2 that depend only on ht such that K̃1 6 K1||f ||C1 and
K̃2 6 K2||f ||C1 .
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Finally, remark that in order to get a rotation number of constant type, the condition
for the flow not to have periodic orbit is necessary: otherwise the existence of a transverse
curve γ is no longer guaranteed. If such a curve exists then the first return map R has a
periodic point, hence has a rational rotation number.

2.3 A nonminimal flow satisfying the assumptions of Theo-
rem 2.2.2

We finish this chapter by proving that the class of flows we are working with is strictly larger
than the class of flows studied by Giulietti and Liverani which are necessarily minimal. The
proof relies on constructing a family of C1 nonminimal flows. By [KH95, Proposition 14.2.4],
these flows are less than C2.

Theorem 2.3.1. There exists a flow on T2 satisfying the assumptions of Theorem 2.2.2
that is not minimal. Furthermore, the flow can be chosen to be renormalized by an Axiom
A diffeomorphism.

Notice however that all flows satisfying the assumptions of Theorem 2.2.2 are obtained
by suspending circle diffeomorphisms of irrational rotation numbers, and thus are minimal
on the support of their unique invariant measure.

Without the last condition of renormalization, we can simply construct such a flow by
taking the suspension of a Denjoy counter-example whose rotation number is of constant
type. Such circle diffeomorphisms exist by the original construction of Denjoy, which
works for any irrational rotation number. For an expository on the construction of Denjoy
counter-examples, see for example 1 [Ath15]. However, there is no reason for the flow
obtained by suspending a Denjoy counter-example to be renormalized by an Axiom A
diffeomorphism. Adding this condition, the flow falls into the category of W u-flows studied
by Marcus in [Mar75a], in the particular case where the phase space of the flow is the same
as the one of the Axiom A map — in opposition with just the set of nonwandering points
of the map. Finally, results on Ruelle spectrum and dynamical determinants for Axiom A
diffeomorphisms can be found in [BT08,DR21] (and results on dynamical zeta functions
for Axiom A flows in [DG18]), but asymptotic expansions of ergodic integrals associated to
W u-flows using transfer operator techniques are still quite rare in literature and there is
room for work to be done in this setting.

In order to build a flow satisfying this last condition, consider the derived from Anosov
transformation on the two-torus studied in [Cou16, Chapter 9] and [Cou06]. The flow ht
will be the flow generated by some vector field vsβ0

defined below. Recall some notation.
Starting from Arnold’s cat map (case β = 0) in the diagonalized form, and adding a bump
in the unstable direction, let fβ :

[
−1

2 ,
1
2

]2
→ R2 be as follows

fβ

(
x

y

)
:= 1

1 + λ2

(
λ −1
1 λ

)λ2 + βk

(√
x2+y2

2

)
0

0 λ−2

( λ 1
−1 λ

)(
x

y

)
,

where λ = 1+
√

5
2 , −λ2 < β < 0 and k is an even, unimodal function supported in [−1, 1] such

that k(0) = 1 – e.g. k(r) = (1−r2)21[−1,1](r) – so that the map fβ is invariant by the action

1. I thank Selim Ghazouani for indicating me this reference.



2.3. A nonminimal flow satisfying the assumptions of Theorem 2.2.2 33

of Z2 and induces a map, also called fβ , on the torus T2. It is shown in [Cou16, Chapter
9] that fβ is a diffeomorphism of class C1 of the torus and if −λ2 < β < −λ2 + 1 then the
origin is an attractive hyperbolic fixed point. Let Kβ be the invariant subset defined as
the complement of the basin of attraction of 0. This map is an explicit example of Smale’s
derived from Anosov transformation as introduced in [Sma67, Section I.9], here obtained
by perturbing Arnold’s cat map.

Let eu = 1√
1+λ2

(
λ

1

)
and es = 1√

1+λ2

(
−1
λ

)
be unitary eigenvectors of the matrix

A :=
(

2 1
1 1

)
respectively associated to eigenvalues λ2 and λ−2. Since A is symmetric,

notice that (eu, es) is an orthonormal basis. In this basis the Jacobian matrix of fβ at
x ∈ T2 is

Jac(fβ)(x) =
(
aβ(x) bβ(x)

0 λ−2

)
.

Since the Jacobian is upper-triangular, lines spanned by eu are stable by fβ. Assuming
that k satisfies also k + id k′ 6 1, fβ|Kβ expands uniformly the direction spanned by eu.
In order to construct a stable foliation over Kβ , for X a vector field, denote (fβ)∗X(x) =
(dxfβ)−1X(fβ(x)) to be the pullback of X by fβ . Formally, if vsβ = lim

n→+∞
λ−2n(fβ)n∗X, then

λ−2(fβ)∗vsβ = vsβ, or in other words dxfβ vsβ(x) = λ−2vsβ(f(x)), vsβ is uniformly contracted
by dfβ. For the constant vector field X ≡ es, formally we get

vsβ(x) = es −
∞∑
i=0

λ−2ibβ(f iβ(x))
i∏

j=0

1
aβ(f jβ(x))

eu, x ∈ T2. (2.3.1)

This equation being only formal, we need to check that the series inside it converges. Since
bβ is bounded and aβ > 1 on the compact set Kβ, (2.3.1) defines a vector field on Kβ,
uniformly contracted by fβ:

dxfβ vsβ(x) = λ−2vsβ(fβ(x)) (2.3.2)

for all x ∈ Kβ . It is shown in [Car21, Theorems 3.3 and 3.6] — in a slightly more general
context — that (2.3.1) defines a Lipschitz continuous vector field on T2 for any fixed β in
]− λ2 + λ−4, 0] and that the map (x, β) 7→ vsβ(x) is continuous on T2× ]− λ2 + λ−4, 0].

Let ht be the flow generated by vsβ0
for some fixed −λ2 + λ−4 < β0 < −λ2 + 1. In fact,

if we choose for the function k any C2 unimodal and even function supported in [−1, 1],
equal to 1 at 0 and satisfying k + id k′ 6 1, the induced vector fields vsβ enjoys the same
properties as before, but they are also C1 – see the discussion in [Car21, Theorem 3.7]
– hence the flow ht is also C1. We make such a choice for k. We claim that this flow ht
satisfies the condition of Theorem 2.2.2 and that it is not minimal.

In order to prove this result, we first construct a closed transversal curve γ. We then
construct a particular homotopy between the first return map and a rigid rotation, where
none of the in-between map has a periodic point. From the continuity of the rotation
number, it is enough to compute the rotation number of the rigid rotation, which happens
to be a quadratic integer. The nonminimality follows from the invariance of the proper
closed set Kβ0 by the flow ht. First we need the following lemma.



34 Chapter 2. Logarithmic bounds on ergodic sums

Lemma 2.3.2. The flow ht does not have periodic orbit. This is also true for the flow
generated by vsβ for any −λ2 + λ−4 < β 6 0.

Proof. By construction, each vector field vsβ satisfies dxfβ(vsβ(x)) = λ−2vsβ(fβ(x)). By
differentiating fβ0 ◦ ht(x) and hλ−2t ◦ fβ0(x) according to t, we get that these two functions
satisfy the same Cauchy problem for all x ∈ T2, thus the relation

fβ0 ◦ ht = hλ−2t ◦ fβ0 (2.3.3)

holds by uniqueness of the solution (because vsβ is Lipschitz continuous). Therefore, if
by contradiction ht has a periodic orbit, by applying fnβ0

, for n large enough, we get an
arbitrarily short periodic orbit for the flow. This contradicts the fact that the component
along es in the basis (eu, es) of vsβ0

is constant equal to 1.

Proof of Theorem 2.3.1. Since the map (x, β) 7→ vsβ(x) is continuous on the compact set
T2 × [β0, 0], the component of these vector fields in the basis (eu, es) along eu is uniformly
bounded and along es is equal to 1, by definition. Therefore, there exists a vector w of

rational slope, say w = 1√
p2+q2

(
q

p

)
, where p and q are coprimes, so that w is uniformly

transverse to vsβ for all β ∈ [β0, 0]. Define γ to be the closed curve passing through (0, 0)
and with slope p/q. By choice of w, the curve γ is transverse to vsβ and so for every β in
[β0, 0]. We can naturally parametrize γ by S1.

Let R : S1 → S1 be the first return map to γ of ht. Notice that performing a time
change on this flow does not affect the first return map R, but only the first return time
function u. In order to simplify computations, renormalize the vector fields as follows

wsβ = 1〈
vsβ, w

⊥
〉vsβ

so that, for each β, the flow φ
(β)
t generated by wsβ has a constant first return time function

uβ ≡ τβ, where w⊥ is the unitary vector equal to w rotated by an angle π/2. These first
return time functions do not depend on β, in other words τβ ≡ τ . Since b0 ≡ 0, notice that
ws0 is a constant vector field (equals everywhere to es), hence its first return map to γ is a
rigid translation Rα : x 7→ x+ α. Introduce also the notation R(β) for the first return map
to γ of φ(β)

t . In particular R = R(β0) and Rα = R(0).
By [Car21, Theorem 3.10], the map β 7→ vsβ is continuous for the C0-topology on

the space of vector fields. From a Gronwall type argument, we get that β 7→ R(β) is
continuous for the C0-topology. Now, by [Her79, Proposition II.2.7], the map β 7→ ρ(R(β))
is continuous, where ρ(R(β)) stands for the rotation number of R(β). In order to prove that
ρ(R) = α, we prove that ρ(R(β)) cannot be rational, but this directly follows from Lemma
2.3.2. Hence β 7→ ρ(R(β)) is a constant map and ρ(R) = α.

We now compute the value of α. Consider lifts w̃s(0), γ̃ and φ̃(0)
t to R2 of respectively

ws0, γ and φ(0)
t . Let (∂x, ∂y) be the canonical basis of R2. Notice that the arc {φ̃(0)

t ((0, 1)) |
−pτ 6 t 6 0} starts at the point (0, 1) and ends on the branch of γ̃ containing (0, 0) at
some point cw, for some c > 0. The coordinates of this intersection point satisfy the system
of equations 

−pτ
〈
ws(0), ∂x

〉
= cq(p2 + q2)−1/2

1− pτ
〈
ws(0), ∂y

〉
= cp(p2 + q2)−1/2,
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where 〈·, ·〉 denotes the usual scalar product. Now, notice that c/|γ| = −pα, where |γ| is
the length of the closed curve γ. We can solve these equations for α and get

α = 1
pq

1
λ− p

q

which clearly is a quadratic integer, since λ is. Therefore α is of constant type.
The nonminimality of ht is ensured by properties proven in [Cou16, Chapter 9]. More

precisely, let U be the basin of attraction of (0, 0) for fβ0 and K be its complement in the
torus. In [Cou16, Chapter 9], Coudène proved that the set K is nonempty and that U and
K are invariant by fβ0 . Now, because of (2.3.3), the sets U and K are invariant by the
flow ht.

Finally, the map f is an Axiom A diffeomorphism since f is transitive [Cou16, Chapter 9]
on the hyperbolic set K [Car21, Theorem 2.9]. Therefore, by the shadowing lemma, periodic
points are dense in the compact invariant set K which coincides with the nonwandering
set of f .

Figure 2.1 – Representation of the minimal component K of the flow (ht). Underneath is
the vector field vs generating the flow.

Finally, we give in Figure 2.1 a representation of the set K. In [Cou16, Chapter 9], it
is proven that K is the closure of the stable leaf W s(p) of a hyperbolic fixed point p for
fβ0 . From the relation (2.3.3) and the Hartman-Grobman theorem, it follows that this
stable leaf is equal to the orbit of p by the flow ht. From [CFS82, Theorem 3.3.4], the set
K ∩ γ coincides with any ω-limit set and any α-limit set of R. Therefore, the set K is the
minimal component of ht and is also an attractor for both positive and negative times.
Moreover, K is also the support of the unique invariant measure µ of ht.

2.A Alternative proof of Theorem 2.3.1 from semi-conjugacy

We give an alternative proof of Theorem 2.3.1. More precisely, we use the same example,
but we compute the rotation number in a different way: we construct a semi-conjugacy
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map h so that h ◦ R = Rα ◦ h. It will follow that the rotation number of R is α. The
construction of h is inspired from the proof of [Yoc05, Proposition 7].

Proof. Exactly as in the first proof of Theorem 2.3.1, we construct the closed transversal
curve γ and we renormalize the vector fields vsβ so that the time of first return function to
γ of their associated flows is constant. The computation of α remains the same, and we
get that α is a quadratic integer, hence α is of constant type. In particular, the rotation
Rα is minimal.

We now prove that the first return map R of ht is semi-conjugated to Rα. To this end,
we construct a surjective and continuous function h of the circle.

Let h(Rn(0)) := Rnα(0) for all n ∈ Z. This map is well defined since ht has no periodic
orbit by Lemma 2.3.2, so does R. In order to extend h into a continuous map, we first
prove that it preserves order of triplets. Fix an orientation of S1 — and therefore of γ
— seen as R/Z. Let x1 := Rn1(0), x2 := Rn2(0) and x3 := Rn3(0) be so that (x1, x2, x3)
is an ordered triplet of S1 — we can assume that n1, n2 and n3 are distinct. We prove
that the triplet (x′1, x′2, x′3) = (h(x1), h(x2), h(x3)) is also ordered. Consider the family
of curves ϕβ := {φ(β)

t (0) | min(n1, n2, n3)τ 6 t 6 max(n1, n2, n3)τ}. By continuity of
(x, β) 7→ wsβ(x), this family depends on β in a continuous fashion.

Notice that points x1, x2 and x3 correspond to some intersection points between ϕβ0

and γ, and that points x′1, x′2, and x′3 correspond to some intersection points between ϕ0
and γ. Furthermore, we can connect x1 to x′1 (respectively x2 to x′2, and x3 to x′3) with
intersection points between γ and ϕβ when varying the value of β. Therefore we can track
the evolution of (x1, x2, x3) with continuous functions (x1(β), x2(β), x3(β)) of β such that
x1(β0) = x1 and x1(0) = x′1 — and similarly for x2(β) and x3(β).

By contradiction, suppose that the triplet (x′1, x′2, x′3) is not ordered. By continuity, this
means that for some value of β1 in [β0, 0] and without loss of generality x1(β1) = x2(β1).
In other words, this means that the first return map to γ of φ(β1)

t has a periodic point,
which contradicts Lemma 2.3.2.

Therefore, the map h can be lifted into a “degree” one, increasing, function h̃ :
π−1{Rn(0) | n ∈ Z} → π−1{Rnα(0) | n ∈ Z}, where π : R → R/Z is the canonical
projection. In other words, π ◦ h̃ = h◦π and h̃(x+1)− h̃(x) = 1 for all x where h̃ is defined.
By minimality of Rα, the range of h̃ is dense in R. Hence, we can uniquely extend h̃ by
a continuous, increasing and surjective function h̃ : R→ R. Its projection on the circle,
still noted h, is also continuous and extends h into a degree one map of the circle. By
continuity of R and of Rα, we get that h ◦R = Rα ◦ h. Therefore, by [Her79, Proposition
II.2.10], the rotation number of R is α, a quadratic integer.

The nonminimality of ht is ensured by properties proven in [Cou16, Chapter 9].

Remark 2.A.1. The construction of the conjugacy map h comes from the following heuristic.
Since the stable manifold of 0 under the cat map is blown up into an open set, the basin
of attraction Uβ := T2 rKβ of 0 under fβ, we expect that the map h relates the orbit of
0 under Rα with the orbit of I under R, where I is the connected component of γ ∩ Uβ
containing 0 (notice that I is a wandering interval and that its orbit under R is γ ∩ Uβ,
which is dense in γ). More precisely, we expect h to be similar to the Cantor staircase
function, being constant when restricted to each Rn(I). As in the construction of the
Cantor staircase function, we only need to know the values of h where it is constant, as
long as h is non-decreasing and that this set of values has a connected closure. In the proof
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above, we chose to define h first by setting h(xn) = Rnα(0) with xn = Rn(0), but we could
have chosen any sequence xn ∈ Rn(I).
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Chapter 3

A family of natural equilibrium measures for Sinai billiard
flows

Abstract

This chapter contains the results of [Car22b]. The Sinai billiard flow on the two-torus,
i.e., the periodic Lorentz gaz, is a continuous flow, but it is not everywhere differentiable.
Assuming finite horizon, we relate the equilibrium states of the flow with those of
the Sinai billiard map T – which is a discontinuous map. We propose a definition
for the topological pressure P∗(T, g) associated to a potential g. We prove that for
any piecewise Hölder potential g satisfying a mild assumption, P∗(T, g) is equal to the
definitions of Bowen using spanning or separating sets. We give sufficient conditions
under which a potential gives rise to equilibrium states for the Sinai billiard map. We
prove that in this case the equilibrium state µg is unique, Bernoulli, adapted and gives
positive measure to all nonempty open sets. For this, we make use of a well chosen
transfer operator acting on anisotropic Banach spaces, and construct the measure by
pairing its maximal eigenvectors. Last, we prove that the flow invariant probability
measure µ̄g, obtained by taking the product of µg with the Lebesgue measure along
orbits, is Bernoulli and flow adapted. We give examples of billiard tables for which
there exists an open set of potentials satisfying those sufficient conditions.

3.1 Introduction

3.1.1 Billiards and equilibrium states

In this work, we are concerned with a class of dynamics with singularities: the dispersing
billiards introduced by Sinai [Sin70] on the two-torus. A Sinai billiard on the torus is (the
quotient modulo Z2, for position, of) the periodic planar Lorentz gaz (1905) model for the
motion of a single dilute electron in a metal. The scatterers (corresponding to atoms of

0. JC is grateful to ITS–ETH Zurich for their invitation in May 2022. Thanks to Viviane Baladi, Mark
Demers and Alexey Korepanov for useful discussions and comments. Research supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 787304).
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the metals) are assumed to be strictly convex (but not necessarily discs). Such billiards
have become fundamental models in mathematical physics.

To be more precise, a Sinai billiard table Q on the two-torus T2 is a set Q = T2 rB

with B = tDi=1Bi for some finite number D > 1 of pairwise disjoint closed domains Bi,
called scatterers, with C3 boundaries having strictly positive curvature – in particular,
the scatterers are strictly convex. The billiard flow φt is the motion of a point particle
travelling at unit speed in Q with specular reflections off the boundary of the scatterers.
Identifying outgoing collisions with incoming ones in the phase space, the billiard flow is
continuous. However, the grazing collisions – those tangential to scatterers – give rise to
singularities in the derivative [CM06]. The Sinai billiard map T – also called collision map
– is the return map of the single point particle to the scatterers. Because of the grazing
collisions, the Sinai billiard map is a discontinuous map.

Sinai billiard maps and flows both preserve smooth invariant probability measures,
respectively µSRB and µ̃SRB, which have been extensively studied: (T, µSRB) and (φt, µ̃SRB)
are uniformly hyperbolic, ergodic, K-mixing [Sin70,BS73,SC87], and Bernoulli [GO74,CH96].
The measure µSRB is T -adapted [KSLP86] in the sense of the integrability condition:∫

| log d(x,S±1)|dµSRB <∞ ,

where S±1 is the singularity set for T±1. Both systems enjoy exponential decay of cor-
relations [You98,DZ11]. Since the billiard has many periodic orbits, it thus has many
other ergodic invariant measures, but until very recently most of the results apply to
perturbations of µSRB [CWZ17,DRBZ18].

In the case of an Anosov flow, it is known since the work of Bowen [Bow72b] that
the Kolmogorov-Sinai entropy is upper-semicontinuous, which guarantees the existence
of measures of maximal entropy, or more generally, of equilibrium states. Because of the
singularities, billiard flows are not Anosov and therefore methods used in the context of
Anosov flows cannot be applied easily. The upper-semicontinuity of the entropy is not
known at the moment, and, more generally, the existence of equilibrium states has to be
treated one potential at the time.

In a recent paper, Baladi and Demers [BD20] proved, under a mild technical assumption
and assuming finite horizon, that there exists a unique measure of maximal entropy µ∗ for
the billiard map, and that µ∗ is Bernoulli, T -adapted, charges all nonempty open sets and
does not have atoms. Their construction of this measure relies on the use of a transfer
operator acting on anisotropic Banach spaces, similar to those used by [DZ11] in order to
study µSRB. Combining their work with those of Lima–Matheus [LM18] and Buzzi [Buz20],
Baladi and Demers proved that their exists a positive constant C such that

Ceh∗m 6 #Fix Tm , ∀m > 1 , (3.1.1)

where #Fix Tm denotes the number of fixed points of Tm, and h∗ is the topological entropy
of the map T from [BD20]. Baladi and Demers also give a condition under which µ∗ and
µSRB coincide.

In a subsequent paper, Baladi and Demers [BD22] constructed a family of equilibrium
states µt for T associated to the family of geometric potentials −t log JuT , where JuT is the
unstable Jacobian of T and t ∈ (0, t∗) for some t∗ > 1. In the case t = 1, µt = µSRB. The
construction again relies on the use of a family of transfer operators Lt acting on anisotropic
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Banach spaces. For each t ∈ (0, t∗), they proved that µt is the unique equilibrium state
associated with the potential −t log JuT , that µt is mixing, T -adapted, has full support
and does not have atoms. Baladi and Demers also showed that each transfer operator
Lt has a spectral gap, from which they deduced the exponential rate of mixing for each
measure µt, for C1 observables.

Even more recently, Demers and Korepanov [DK22] proved a polynomial decay of
correlations for the measure µ∗ for Hölder observables.

In this paper, we give a sufficient condition under which a piecewise Hölder potential g
admits equilibrium states for T . Under this assumption, we prove that the equilibrium
state is in fact unique, Bernoulli, T -adapted and charges all nonempty open sets. We prove
that its lift into a flow invariant measure is Bernoulli and flow-adapted. We also identify
the potential g = −htop(φ1)τ to be such that its corresponding equilibrium states for T –
whenever they exist – are in bijection with measures of maximal entropy of the billiard
flow.

Notice that the geometric potentials −t log JuT are not piecewise Hölder, and thus the
work of Baladi and Demers [BD22] on those potentials is distinct from ours.

3.1.2 Statement of main results – Organization of the paper

Since transfer operator techniques are simpler to implement for maps than for flows, we will
be concerned with the associated billiard map T : M →M defined to be the first collision
map on the boundary of Q, where M = ∂Q× [−π/2, π/2]. We assume as in [You98,BD20],
that the billiard table Q has finite horizon, in the sense that the billiard flow does not
have any trajectories making only tangential collisions – in particular, this implies that the
return time function τ to a scatterers is bounded.

The first step is to find a suitable notion of topological pressure P∗(T, g) for the
discontinuous map T and a potential g : M → R. In order to define it, we introduce
as in [BD20], the following increasing family of partition of M . Let P be the partition
into maximal connected sets on which both T and T−1 are continuous, and let Pn−k =∨n
i=−k T

−iP. Then the sequence
∑
P∈Pn0

supP eSng is submultiplicative, where Sng =
1
n

∑n−1
i=0 g ◦ T i is the Birkhoff sum of g. We can thus define the topological pressure by

Definition 3.1.1. P∗(T, g) := lim
n→+∞

1
n log

∑
P∈Pn0

supP eSng

Section 3.2 is dedicated to the study of this quantity. In particular, we prove (Propo-
sition 3.2.2) that whenever the potential g is smooth enough – piecewise Hölder – and
P∗(T, g)− sup g > 0 then P∗(T, g) coincides with both Bowen’s definitions using spanning
sets and separating sets. We also prove (Lemma 3.2.4) that for each T -invariant measure
µ, we have P∗(T, g) > hµ(T ) +

∫
g dµ. Finally, we show that if g = −htop(φ1)τ admits an

equilibrium state µg, then the measure µ̄g = (
∫
τ dµg)−1µg ⊗ λ is a measure of maximal

entropy for the billiard flow, seen as a suspension flow over T , where λ is the Lebesgue
measure in the flow direction.

To state our existence results (in Section 3.6), we need to quantify the recurrence to the
singular set. Fix an angle ϕ0 close to π/2 and n0 ∈ N. We say that a collision is ϕ0-grazing
if its angle with the normal is larger than ϕ0 in absolute value. Let s0 = s0(ϕ0, n0) ∈ (0, 1]
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denote the smallest number such that

any orbit of length n0 has at most s0n0 collisions which are ϕ0-grazing. (3.1.2)

Due to the finite horizon condition, we can choose ϕ0 and n0 such that s0 < 1. We refer
to [BD20, §2.4] for further discussion on this quantity. From [CM06], Λ = 1 + κminτmin > 1
is the expanding factor in the hyperbolicity of T , where κmin is the minimal curvature of
the scatterers and τmin is the minimum of the return time function τ . Define S0 = {(r, ϕ) ∈
M | |ϕ| = π/2} the set of grazing collisions, and S±n = ∪ni=0T

∓iS0 the singular set of T±n.
Call Nε(·) the ε-neighbourhood of a set. Then

Theorem 3.1.2. If g is a bounded, piecewise Hölder potential such that P∗(T, g)− sup g >
s0 log 2 and log Λ > sup g − inf g, then there exists a probability measure µg such that

(i) µg is T -invariant, T -adapted and for all k ∈ Z, there exists Ck > 0 such that
µg(Nε(Sk)) 6 Ck| log ε|−γ.

(ii) µg the unique equilibrium state of T under g: that is P∗(T, g) = hµg(T ) +
∫
g dµg

and P∗(T, g) > hµ(T ) +
∫
g dµ for all µ 6= µg.

(iii) µg is Bernoulli 1 and charges all nonempty open sets.

If the assumption log Λ > sup g − inf g is weakened into the condition SSP.1 (as defined
above Lemma 3.3.3), then item (i) still holds. If the assumption log Λ > sup g − inf g is
weakened into the condition SSP.2 (as defined above Corollary 3.3.6), then items (i), (ii)
and (iii) hold.

The above theorem will follow from Proposition 3.6.1, Lemma 3.6.2, Corollary 3.6.14,
and Propositions 3.6.18, 3.6.15, 3.6.10. Furthermore, assuming the sparse recurrence to
singularities condition from [BD20], we provide in Remark 3.3.11 an open set of potentials,
each having SSP.1 and SSP.2.

The tool used to construct the measure µg is a transfer operator Lg with Lgf =
(f eg/JsT ) ◦ T−1, similar to the one used in [BD20] corresponding to the case g ≡ 0. This
operator and the anisotropic Banach spaces on which it acts are defined in details in
Section 3.4. Section 3.3 contains key combinatorial growth lemmas, controlling the growth
in weighted complexity of the iterates of a stable curve. These lemmas will be crucial
since the quantity they control appears in the norms of the iterates of Lg. In Section 3.5,
we prove a (degenerated) “Lasota–Yorke" type inequality (Proposition 3.5.1) – giving an
upper bound on the spectral radius of Lg – as well as a lower bound on the spectral radius
(Theorem 3.5.3).

Section 3.6 is devoted to the construction and the properties of the measure µg. From
the estimates on the norms from the previous section, we are able to construct left and
right maximal eigenvectors (ν̃ and ν) for Lg. We construct the measure µg by pairing
these eigenvectors. We then prove the estimates on the measure of a neighbourhood of
the singular sets (Lemma 3.6.2). Section 3.6.3 contains the key result of the absolute
continuity of the stable and unstable foliations with respect to µg, as well as the proof that
µg has total support – this is done by exploiting the ν-almost everywhere positive length of
unstable manifolds from Section 3.6.2. In Section 3.6.4, we show that µg is ergodic, from

1. Recall that Bernoulli implies K-mixing, which implies strong mixing, which implies ergodic.
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which we bootstrap to K-mixing using Hopf-argument. Adapting [CH96] with modifications
from [BD20], we deduce from the hyperbolicity and the K-mixing that µg is Bernoulli.
Still in Section 3.6.4, we give an upper-bound on the measure of weighted Bowen balls,
from which we deduce, using the Shannon–MacMillan–Breiman theorem, that µg is an
equilibrium state for T under the potential g (Corollary 3.6.14). Finally, the Section 3.6.5
is dedicated to the uniqueness of the equilibrium state µg.

In Section 3.7, we prove using arguments from [CM06] that (φt, µ̄g) is K-mixing
(Proposition 3.7.1), and again, using the hyperbolicity of the billiard flow, we adapt [CH96]
in order to prove that (φt, µ̄g) is Bernoulli (Proposition 3.7.2). Finally, we prove that µ̄g is
flow adapted in the sense of the integrability condition formulated in Proposition 3.7.4.
We summarize this results about the billiard flow in the following theorem.

Theorem 3.1.3. Let g be a potential satisfying the assumptions from Theorem 3.1.2,
and let µ̄g := (

∫
τ dµg)−1µg ⊗ λ. Then µ̄g is a φt-invariant Borel probability measure

that is an equilibrium states for any potential g̃ such that g = λ(g̃) − P (φ1, g̃)τ , where
λ(g̃)(x) =

∫ τ(x)
0 g̃(φt(x)) dt. Furthermore, µ̄g is flow adapted and (φt, µ̄g) is Bernoulli.

In a work in preparation with Baladi and Demers [BCD22], we bootstrap from the
results of the present paper to show that if htop(φ1)τmin > s0 log 2 then the potential
−htop(φ1)τ satisfies the sufficient assumptions SSP.1 and SSP.2 in our Theorem 3.1.2, thus
constructing a measure of maximal entropy for the billiard flow. This is done by studying
the family of potentials −tτ and proving that the maximal value t∞ of t such that −t′τ has
SSP.1 and SSP.2 for all 0 6 t′ 6 t, satisfies t∞ > htop(φ1). Indeed, recalling Remark 3.3.11
and Corollary 3.2.6, for every small enough |t|, −tτ has SSP.1 and SSP.2, and the case
t = htop(φ1) corresponds to measures of maximal entropy for the billiard flow.

3.2 Topological Pressure, Variational Principle and Abramov
Formula

In this section, we formulate definitions of topological pressure for the billiard map, and
prove that – under some conditions – they are equivalent. Using a classical estimate, we
then prove one direction of the variational principle. Finally, making use of the Abramov
formula, we relate equilibrium states of T with the ones of the billiard flow. More specifically,
we identified the potential for T which is related to – up to existence – the measures of
maximal entropy of φt.

We first introduce notation: Adopting the standard coordinates x = (r, ϕ) on each
connected component Mi of

M := ∂Q×
[
−π2 ,

π

2

]
=

D⊔
i=1

∂Bi ×
[
−π2 ,

π

2

]
,

where r denotes arclength along ∂Bi, ϕ is the angle the post-collisional trajectory makes
with the normal to ∂Bi and Mi = ∂Bi ×

[
−π

2 ,
π
2
]
. In these coordinates, the collision map

T : M → M preserve a smooth invariant probability measure µSRB given by dµSRB =
(2|∂Q|)−1 cosϕdrdϕ.

We now define the sets where T and its iterates are discontinuous. Let S0 := {(r, ϕ) ∈
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M | |ϕ| = π/2} denote the set of grazing collisions. For each nonzero n ∈ N, let

S±n :=
n⋃
i=0

T∓iS0,

denote the singularity set for T±n. It would be natural to study the map T restricted to
the invariant set M r ∪n∈ZSn where T is continuous, however the set of curves ∪n∈ZSn is
dense in M [CM06, Lemma 4.55]. We thus introduce the classical family of partitions of
M as follows.

For k, n > 0, letMn
−k denote the partition ofMr(S−k∪Sn) into its maximal connected

components. Note that all elements ofMn
−k are open sets on which T i is continuous, for

all −k 6 i 6 n. Since the thermodynamic sums over elements ofMn
0 of a potential g will

play a key role in the estimates on the norms of the iterates of the transfer operator Lg in
Section 3.5, it should be natural – by analogy to the case of continuous maps – to define
the topological pressure from these sums.

Another natural family of partitions is given as follows. Let P denote the partition of
M into maximal connected components on which both T and T−1 are continuous. Define
Pn−k =

∨n
i=−k T

−iP and remark that T i is continuous on every element of Pn−k, for all
−k 6 i 6 n.

The interior of each element of P corresponds to precisely one element ofM1
−1, but

its refinements Pn−k may also contain some isolated points – this happens if three or more
scatterers have a common grazing collision. These partitions already appeared in the work
of Baladi and Demers, where they proved [BD20, Lemma 3.2] that the number of isolated
points in Pn−k grows linearly in n+ k.

Finally, denote P̊n−k the collection of interior of elements of Pn−k. In [BD20, Lemma 3.3],
Baladi and Demers proved that P̊n−k =Mn+1

−k−1, for all n, k > 0. It should be natural that
the topological pressures obtained from these three families of partitions coincide. This is
the content of Theorem 3.2.1.

In order to formulate the result on the equivalence between definitions of topological
pressure for T , we need to be more specific about the definition of piecewise Hölder.

We say that a function g is (M1
0, α)-Hölder, 0 < α < 1, if g is α-Hölder continuous on

each element of the partitionM1
0. We define the Cα norm |g|Cα of g to be the maximum,

over all connected components U of the domain of continuity of g, of the usual Cα norm
|g|Cα(U), that is

|g|Cα = max{|g|C0(U) +Hα
U (g) | U connected set on which g is continuous},

where
Hα
U (g) = sup

x,y∈U

|g(x)− g(y)|
d(x, y)α .

Similarly, we say that a function g isM1
0-continuous if g is bounded and continuous on

each element of the partitionM1
0. We define the C0 norm |g|C0 to be the maximum over

all connected components U of the domain of continuity of g, of the usual C0 norm, that is

|g|C0 = max{|g|C0(U) | U connected set on which g is continuous}.
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Theorem 3.2.1. Let g : M → R be a potential bounded from above. Then

lim
n→+∞

1
n

log
∑
A∈Pn0

sup
x∈A

e(Sng)(x) =: P∗(T, g)

exists and is called the pressure of g. Moreover, the map g 7→ P∗(T, g) is convex.
When g isM1

0-continuous and P∗(T, g)− sup g > 0, the following limits exist and are
equal to P∗(T, g).

(i) lim
n→+∞

1
n log

∑
A∈P̊n0

sup
x∈A

e(Sng)(x),

(ii) lim
n→+∞

1
n log

∑
A∈Mn

0

sup
x∈A

e(Sng)(x).

Furthermore, when g is also (M1
0, α)-Hölder continuous, then the following limits are

equal to P∗(T, g).

(iii) lim
n→+∞

1
n log

∑
A∈Pn0

inf
x∈A

e(Sng)(x),

(iv) lim
n→+∞

1
n log

∑
A∈P̊n0

inf
x∈A

e(Sng)(x),

(v) lim
n→+∞

1
n log

∑
A∈Mn

0

inf
x∈A

e(Sng)(x),

Finally, the sequence n 7→ log
∑

A∈Mn
0

sup
x∈A

eSn−1g(x) is subadditive.

Proposition 3.2.2. Let g be a M1
0-continuous potential. Let Pspan(T, g) and Psep(T, g)

be the pressure obtained using Bowen’s definition with, respectively, spanning sets and
separating sets. Then Pspan(T, g) 6 P∗(T, g) and Psep(T, g) 6 P∗(T, g). When P∗(T, g)−
sup g > 0, then P∗(T, g) = Psep(T, g). Furthermore, when P∗(T, g) − sup g > 0 and g is
(M1

0, α)-Hölder, P∗(T, g) = Pspan(T, g).

The proof of the last three forms of P∗(T, g) in Theorem 3.2.1 relies crucially on the
following lemma.

Lemma 3.2.3. For every (M1
0, α)-Hölder continuous potential g there exists a constant

Cg such that for all n > 1 and all P ∈ Pn0 ,

sup
P
eSng 6 Cg inf

P
eSng.

The estimate still holds, for the same constant Cg, when Pn0 is replaced by Pn−l, P̊n−l or
Mn
−l, for any fixed l > 0.

Before the proofs of these results, we first recall that T is uniformly hyperbolic in the
sense [CM06] that the cones

Cu := {(dr, dϕ) ∈ R2 | κmin 6 dϕ/dr 6 κmax + 1/τmin},
Cs := {(dr, dϕ) ∈ R2 | −κmin > dϕ/dr > −κmax − 1/τmin},

(3.2.1)

are strictly invariant under DT and DT−1, respectively, whenever these derivatives exist.
Here κmax is the maximum curvature of the scatterer boundaries, κmin the minimum, and
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τmin is the minimum of the return time function τ . Furthermore, there exists C1 > 0 such
that for all n > 1,

||DxT
n(v)|| > C1Λn||v||, ∀v ∈ Cu , ||DxT

−n(v)|| > C1Λn||v||, ∀v ∈ Cs ,

where Λ = 1 + 2κminτmin is the minimum hyperbolicity constant.

Proof of Lemma 3.2.3. Let dn denote the Bowen distance, that is the dynamical distance
given by

dn(x, y) = max
06i6n

d(T ix, T iy) ,

where d(x, y) is the Euclidean metric on each Mi, with d(x, y) = 10D maxi diam(Mi) if x
and y belong to different Mi (this definition ensure we have a compact set). Let ε0 > 0 be
as in [BD20, eq (3.3)], that is: if dn(x, y) < ε0 then x and y lie in the same element ofMn

0 .
Therefore, by the uniform hyperbolicity of T , if d(T i(x), T i(y)) 6 ε0/2 for all |i| 6 n then
d(x, y) 6 C1Λ−nε0/2.

For all integer m and all potential g, define its variation by

Varm(g, T, ε) := sup{|g(x)− g(y)| | d(T jx, T jy) 6 ε, |j| 6 m}.

When g is (M1
0, α)-Hölder, we get that Varm(g, T, ε0

2C1
) 6 C( ε02 Λ−m)α. Therefore

∑
m>0

Varm(g, T, ε0
2C1

) =: K <∞.

By uniform hyperbolicity of T , there exists kε such that diam(Mn+1
−kε ) < ε0/2C1 for all

n > kε. It then follows from the proof of [BD20, Lemma 3.5] that if x and y lie in the same
element of Pkε+n−kε , then dn(x, y) 6 ε0/2C1, for all n > 0.

Let P ∈ Pkε+n−kε and let x, y ∈ P . Let 0 6 k 6 n. Then for all |j| < mk := min(k, n−k),
d(T j(T kx), T j(T ky)) < ε0/2C1 and so |g(T kx)− g(T ky)| 6 Varmk(g, T, ε0

2C1
). Therefore

|Sng(x)− Sng(y)| 6 2
bn2 c+1∑
m=0

Varm(g, T, ε0
2C1

) 6 2K <∞.

Now, let P ∈ Pn0 for some n > 2kε. Notice that Pn0 =
∨n−kε
i=kε T

−iPkε−kε , in other words
for all l such that kε 6 l 6 n − kε, T lP is included in an element of Pkε−kε . Finally, by
decomposing each orbit into three parts, we get that for all x, y ∈ P ,

eSng(x)−Sng(y) = eSkεg(x)−Skεg(y)eSn−2kεg(Tkεx)−Sn−2kεg(Tkεy)eSkεg(T
n−kεx)−Skεg(Tn−kεy)

6 e2kε(sup g−inf g)e2K .

The claim holds for n > 2kε by taking the sup over x and the inf over y in P . Since there
are only finitely many values of n to correct for, by taking a larger constant, the claimed
estimate holds for all n > 1.

Fix some l > 0. Since an element P ∈ Pn−l is contained in a unique element P̃ ∈ Pn0 ,
we get that

sup
P
eSng 6 sup

P̃

eSng 6 C inf
P̃
eSng 6 C inf

P
eSng.
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Now, assume that P̊ 6= ∅. Then, by the continuity of Sng on P , the estimate also holds
when the sup and the inf are taken over P̊ . In other words, the claim is true for all P ∈ P̊n

l
.

Since by [BD20, Lemma 3.3], P̊n−l = Mn+1
−l−1, the claim is true for all P ∈ Mn

−l, for
fixed l > 1. We finish the proof with the case P ∈ Mn

0 . Remark that letting A ∈ Mn
−1,

then T−1A ∈Mn+1
0 . Therefore

e− sup g sup
T−1A

eSn+1g 6 sup
T−1A

eSn+1g−g = sup
A
eSng 6 C inf

A
eSng = C inf

T−1A
eSn+1g−g

6 2Ce− inf g inf
T−1A

eSn+1g.

Only in this last case, we need to replace C by 2Cesup g−inf g > C.

Proof of Theorem 3.2.1. Let pn =
∑

A∈Pn0
sup
x∈A

e(Sng)(x). Then, for k > n,

pn+k =
∑

B∩C∈Pn0
∨
T−nPk0

sup
x∈B∩C

e(Sng)(x)+(Skg)(Tnx) 6 pn pk.

Therefore (log pn)n is a sub-additive sequence. It is then classical that 1
n log pn converges

to inf
n>1

1
n log pn, hence P∗(T, g) exists. We now prove the statement about convexity. Let g1

and g2 be two potentials bounded from above and p ∈ [0, 1]. Using the Hölder inequality,
we get that for all n > 1

∑
A∈Pn0

sup
A
epSng1+(1−p)Sng2 6

∑
A∈Pn0

sup
A

(
eSng1

)p(
sup
A
eSng2

)1−p

6
( ∑
A∈Pn0

sup
A
eSng1

)p( ∑
A∈Pn0

sup
A
eSng2

)1−p
.

Taking the appropriate limits, we get that P∗(T, pg1 + (1 − p)g2) 6 pP∗(T, g1) + (1 −
p)P∗(T, g2), hence the claimed convexity.

For (i), consider p̃n =
∑

A∈P̊n0

sup
x∈A

e(Sng)(x). Notice that

Pn0 = {A ∈ Pn0 | Å 6= ∅} t {A ∈ Pn0 | Å = ∅}.

Now, Baladi and Demers proved in [BD20, Lemma 3.2] that the cardinality of the second
term in the right hand side grows at most linearly. Hence∑

A∈Pn0
Å=∅

sup
x∈A

e(Sng)(x) 6 Cnen sup g.

By the smoothness of g, ∑
A∈Pn0
Å 6=∅

sup
x∈A

e(Sng)(x) =
∑
A∈P̊n0

sup
x∈A

e(Sng)(x).

Thanks to the assumption P∗(T, g)− sup g > 0, the sum over elements A ∈ Pn0 with Å 6= ∅
dominates the sum over A with Å = ∅. Thus ( 1

n log p̃n)n converges to the same limit as
( 1
n log pn)n does.
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For (ii), we use [BD20, Lemma 3.3] that P̊n0 =Mn+1
−1 . Hence∑

A∈Mn+1
0

sup
x∈A

e(Sn+1g)(x) 6
∑

A∈Mn+1
−1

sup
x∈A

e(Sn+1g)(x) 6
∑
A∈P̊n0

sup
x∈A

e(Sng)(x) sup
x∈M

eg(x).

Furthermore, sinceMn+1
−1 =Mn+1

0
∨
M0
−1, each element ofMn+1

0 contains at most #M0
−1

elements ofMn+1
−1 . Hence

∑
A∈Mn+1

0

sup
x∈A

e(Sn+1g)(x) >
1

#M0
−1

∑
A∈P̊n0

sup
x∈A

e(Sng)(x) inf
x∈M

eg(x).

Point (iii) (resp. (iv), (v)) follows directly from the definition of P∗(T, g) (resp. from
point (i), (ii)) and from Lemma 3.2.3 since

inf
A
eSng 6 sup

A
eSng 6 C inf

A
eSng,

for all A in Pn0 (resp. P̊n0 , Mn
0 ). For the final claim, we prove that log

∑
P∈P̊n1

sup
P
eSng is

subadditive. Take P a nonempty element of P̊n+m
1 . It is the interior of an intersection of

elements of the form T−jAj for some Aj ∈ P, for j = 1, . . . , n+m. This is equal to the
intersection of the interiors of T−jAj . But since P is nonempty, none of the T−jAj has
empty interior, and so none of the Aj has empty interior. Thus the interiors of Aj are
in P̊. Now, splitting the intersection of the first n sets from the last m, we see that the
intersection of the first n sets forms an element of P̊n1 . For the last m sets, we can factor
out T−n at the price of making the set slightly bigger:

int(T−n−jA−n−j) ⊂ T−n(int(T−j(A−n−j))) , 1 6 j 6 m

where int denotes the interior of a set. Thus

∑
P∈P̊n+m

1

sup
P
eSn+mg 6

∑
A−j∈P̊

16j6n+m

sup{eSng+Smg◦Tn(x) | x ∈
n⋂
j=1

T−jA−j ∩ T−n
m⋂
j=1

T−jA−n−j}

6
∑

A−j∈P̊
16j6n

sup{eSng(x) | x ∈
n⋂
j=1

T−jA−j}
∑

A−j∈P̊
16j6m

sup{eSmg(x) | x ∈
m⋂
j=1

T−jA−j}

6
∑
P∈P̊n1

sup
P
eSng

∑
P∈P̊m1

sup
P
eSmg

Taking logs, the sequence is subadditive. And then so is the sequence withMn
0 in place of

P̊n−1
1 .

Proof of Proposition 3.2.2. We first prove the claim about separating sets. Let ε > 0 and
let kε be large enough so that diams(M0

−kε−1) 6 CΛ−kε < c1ε for some constant c1 to be
defined later. Therefore diamu(Mn+1

−kε−1) 6 CΛ−kε < c1ε for all n > kε. By the uniform
transversality between the stable and the unstable cones, we can choose c1 such that
diam(Mn+1

−kε−1) < ε for all n > kε.
Let E be (n, ε)-separated, for some n > kε. It is shown in the proof of [BD20, Lemma 3.4]

that if x, y ∈ E are distinct, then they cannot be contained in the same element of Pkε+n−kε .
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Thus ∑
x∈E

eSng(x) 6
∑

A∈Pkε+n
−kε

|eSng|C0(A) =
∑

A∈P2kε+n
0

|eSng◦Tkε |C0(A)

6 ekε(sup g−inf g) ∑
A∈P2kε+n

0

|eS2kε+ng|C0(A).

Therefore

lim
n→∞

1
n

log sup{
∑
x∈E

eSng(x) | E is (n, ε)-separated} 6 P∗(T, g) , for all ε > 0.

Taking the limit ε→ 0, we get Psep(T, g) 6 P∗(T, g).
For the reverse inequality, assume that g is such that P∗(T, g)− sup g > 0. From the

proof of [BD20, Lemma 3.4], there exists ε0 > 0 such that for all ε < ε0, any set E which
contains only one point per element of Mn

0 is (n, ε)-separated. For all A ∈ Mn
0 , there

exists x ∈ A such that eSng(x) > 9
10 supA eSng. Let E be the collection of such x. Thus

∑
x∈E

eSng(x) >
9
10

∑
A∈Mn

0

|eSng|C0(A) .

Therefore,

lim
n→∞

1
n

log sup{
∑
x∈E

eSng(x) | E is (n, ε)-separated} > P∗(T, g) , for all 0 < ε < ε0.

Taking the limit ε→ 0, we get Psep(T, g) > P∗(T, g), thus the claimed equality.
We now prove the claim concerning spanning sets. Let ε > 0 and let kε be such that

diam(Mn+1
−kε−1) < ε for all n > kε. Let F be a set containing one point in each element of

Pn+1
−kε . From the proof of [BD20, Lemma 3.5], F is (n, ε)-spanning. Since∑

x∈F
eSng(x) 6 ekε(sup g−inf g) ∑

A∈P2kε+n
0

|eS2kε+ng|C0(A)

we get that

lim
n→∞

1
n

log inf{
∑
x∈F

eSng(x) | F is (n, ε)-spanning} 6 P∗(T, g) , for all ε > 0 .

Taking the limit ε→ 0, we get Pspan(T, g) 6 P∗(T, g).
For the reverse inequality, assume that g is a (M1

0, α)-Hölder potential such that
P∗(T, g) − sup g > 0. Let ε < ε0 and let F be a (n, ε)-spanning set. By the proof
of [BD20, Lemma 3.5], each element ofMn

0 contains at least one element of F . Thus∑
x∈F

eSng(x) >
∑

A∈Mn
0

inf
A
eSng .

Taking the appropriate limits, we get that Pspan(T, g) > P∗(T, g), thus the claimed equality.
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3.2.1 Easy Direction of the Variational Principle for the Pressure

Recall that given a T -invariant probability measure µ and a finite measurable partition A
of M , the entropy of A with respect to µ is defined by Hµ(A) = −

∑
A∈A µ(A) logµ(A),

and the entropy of T with respect to A is hµ(T,A) = limn→∞
1
nHµ

(∨n−1
i=0 T

−iA
)
.

Lemma 3.2.4. Let ϕ : M → R be a measurable function. Then

P∗(T, ϕ) > P (T, ϕ) := sup{hµ(T ) +
∫
ϕ dµ | µ is a T -invariant Borel probability measure}

Proof. Let µ be a T -invariant probability measure onM . Notice that P is a generator for T
since

∨∞
i=−∞ T

−iP separates points in M . Thus hµ(T ) = hµ(T,P) (see for example [Wal82,
Theorem 4.17]). Then,

hµ(T ) +
∫
ϕ dµ = lim

n→∞
1
n

∑
A∈Pn0

(
−µ(A) logµ(A) +

∫
A
Snϕdµ

)

6 lim
n→∞

1
n

∑
A∈Pn0

µ(A)(sup
A

(Snϕ)− logµ(A))

6 lim
n→∞

1
n

log
∑
A∈Pn0

sup
A
eSnϕ 6 P∗(T, ϕ)

where we used [Wal82, Lemma 9.9] for the second inequality.

3.2.2 Abramov Formula and Choice of the Potential g

In order to obtain the existence of MME for the billiard flow, we make use of the Abramov
formula to relate equilibrium measure for T and some potential g, to the MME of the flow.
First, we need the following lemma.

Lemma 3.2.5. Let ϕ be a bounded non-negative measurable function such that ϕ0 :=
inf{

∫
ϕdµ | T∗µ = µ} > 0. Then, there exists a unique real number cϕ such that

P (T,−cϕϕ) = 0.

Proof. We first prove that the function t 7→ P (T, tϕ) is increasing. Let ε > 0 and t1 < t2.
There exists a T -invariant probability measure µ1 such that

P (T, t1ϕ) 6 hµ1(T ) + t1

∫
ϕdµ1 + ε 6 P (T, t2ϕ)− (t2 − t1)ϕ0 + ε.

By this computation, we also get that lim
t→±∞

P (T, tϕ) = ±∞ .
Now we prove that t 7→ P (T, tϕ) is continuous. Let ε > 0 and t ∈ R. By the

previous computation, we get that εϕ0 6 P (T, (t+ ε)ϕ)− P (T, tϕ). Let µ2 be such that
P (T, (t+ ε)ϕ) 6 hµ2(T ) + (t+ ε)

∫
ϕ dµ2 + ε. Thus

P (T, (t+ ε)ϕ)− P (T, tϕ) 6 ε(1 + supϕ).

Therefore t 7→ P (T, tϕ) is strictly increasing and continuous, so it must vanish at exactly
one point, noted −cϕ.

We can now use this lemma with the Abramov formula to get the following
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Corollary 3.2.6. Equilibrium measures of T under the potential −htop(φ1)τ and MME
of the billiard flow (seen as a suspension flow) are in one-to-one correspondence through
the bijection µ 7→ µτ := 1

µ(τ)µ⊗ λ, where λ is the Lebesgue measure.

Proof. Since τ > τmin > 0, the assumption of Lemma 3.2.5 is satisfied for ϕ = τ . Let c be
the constant given by Lemma 3.2.5 such that 0 = P (T,−cτ). Then, for every equilibrium
state m of T under the potential −cτ , we get

0 = hm(T )− c
∫
τ dm > hµ(T )− c

∫
τ dµ,

for all T -invariant measure µ. Thus

c = hm(T )∫
τ dm >

hµ(T )∫
τ dµ.

Now, by the Abramov formula, c = hmτ (φ1) > hµτ (φ1). In other words, mτ is a MME
for the billiard flow. Furthermore, since φ1 is a continuous map of a compact metric
space, by [Wal82, Theorem 8.6], we get that htop(φ1) = sup{hµ(φ1) | (φ1)∗µ = µ}. Thus
c = htop(φ1).

To prove that the function is onto, we use that any φt-invariant probability measure µτ
must be of the form 1

µ(τ)µ⊗λ, for some T -invariant probability measure µ. Thus, reversing
the above computations, we get that if µτ is a MME, then µ is an equilibrium state for T
under the potential −htop(φ1)τ .

Therefore, proving the existence and uniqueness of a MME for the billiard flow is
equivalent to proving the existence and uniqueness of equilibrium states of T under the
potential g = −htop(φ1)τ . Notice that in the second case, g is (M1

0,
1
2)-Hölder continuous

and the condition P∗(T, g)−sup g > 0 from Theorem 3.2.1 is realised since P∗(T, g)−sup g >
P (T,−htop(φ1)τ) + htop(φ1)τmin > 0.

Remark 3.2.7. Using similar arguments as in Corollary 3.2.6, we can relate the equilibrium
states of φt under g̃ : Ω → R to the ones of T under g = λ(g̃) − P (φ1, g̃)τ , where
λ(g̃) : M → R is given by

λ(g̃)(x) =
∫ τ(x)

0
g̃(φt(x)) dt.

3.3 Growth Lemma and Fragmentation Lemmas

This section contains growth lemmas, controlling the growth in complexity of the iterates of
a stable curve, with a weight g. We also formulate the precise definitions of the conditions
SSP.1 and SSP.2. The first condition will be used to prove the “Lasota–Yorke" bounds on the
transfer operator Lg in Proposition 3.5.1, as well as the lower bound on the spectral radius
in Theorem 3.5.3, while SSP.2 will be crucial for the absolute continuity (Corollary 3.6.8)
used to prove statistical properties (Propositions 3.6.12 and 3.6.15) and to compute the
pressure (Corollary 3.6.14).

In view of deriving Lemma 3.3.4 from Lemma 3.3.3, we first need to introduce a class
of curves more general than stable manifolds. Recall the stable and unstable cones (3.2.1).

First, denote by Ws the set of all nontrivial connected subsets W of stable manifolds
for T so that W has length at most δ0. Such curves have curvature bounded above by
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a fixed constant [CM06, Prop. 4.29]. Thus T−1Ws = Ws, up to subdivision of curves.
Obviously, Ws ⊂ Ŵs. We define Wu similarly from unstable manifolds of T .

Now, we define a set of cone-stable curves Ŵs whose tangent vectors all lie in the
stable cone Cs for the map, with length at most δ0 (to be determined latter) and curvature
bounded above so that T−1Ŵs ⊂ Ŵs, up to subdivision of curves. We define a set of
cone-unstable curves Ŵu similarly. These sets of curves will be relevant since Sn and S−k
are composed of curves in Ŵs and Ŵu, respectively.

For δ ∈ (0, δ0] and W ∈ Ŵs, let Gδ0(W ) := {W}. For n > 1, define the δ-scaled
subdivision Gδn(W ) inductively as the collection of smooth components of T−1(W ′) for
W ′ ∈ Gδn−1(W ), where elements longer than δ are subdivided to have length between δ/2
and δ. Thus Gδn(W ) ⊂ Ŵs for each n and ∪U∈Gδn(W )U = T−nW . Moreover, if W ∈ Ws,
then Gδn(W ) ⊂ Ws.

Denote by Lδn(W ) those elements of Gδn(W ) having length at least δ/3 (the long curves),
Sδn(W ) := Gδn(W )rLδn(W ) (the short curves), and define Iδn(W ) to comprise those elements
U ∈ Gδn(W ) for which T iU is contained in an element of Sδn−i(W ) for all 0 6 i 6 n− 1.

A fundamental fact [Che01, Lemma 5.2] we will use is that the growth in complexity
for the billiard is at most linear:

∃ K > 0 such that ∀ n > 0, the number of curves in S±n that intersect
at a single point is at most Kn.

(3.3.1)

3.3.1 Growth Lemma

Lemma 3.3.1. For any m ∈ N, there exists δ0 = δ0(m) ∈ (0, 1) such that for all W ∈ Ŵs,
if |W | < δ0, then for all 0 6 l 6 2m, T−lW comprises at most Km + 1 connected
components.
Furthermore, for any δ ∈ (0, δ0], the δ-scaled subdivisions satisfy the following estimates:
for all n > 1, all γ ∈ [0,∞), all W ∈ Ŵs, and allM1

0-continuous potential g, we have

a)
∑

Wi∈Iδn(W )

( log |W |
log |Wi|

)γ
|eSng|C0(Wi) 6 2((n∨n0)s0+1)γ+1(Km+ 1)n/men sup g

b)
∑

Wi∈Gδn(W )

( log |W |
log |Wi|

)γ
|eSng|C0(Wi) 6 min

2Cδ−12((n∨n0)s0+1)γ ∑
A∈Mn

0

|eSng|C0(A) ,

22γ+1Cδ−1
n∑
j=1

2(j∨n0)s0γ(Km+ 1)j/mej sup g ∑
A∈Mn−j

0

|eSn−jg|C0(A)


where (n ∨ n0) = max(n, n0).
Moreover, if |W | > δ/2, then both factors 2(ns0+1)γ can be replaced by 2γ.

Proof. By [CM06, Exercise 4.50], there exist constants δCM > 0 and C > 1 such that
for all W ∈ Ŵs with |W | < δCM, then |T−1W | 6 C|W |1/2. Notice also that there exists
Λ1 := Λ1(ϕ0) such that for W ∈ Ŵs with T−1W ∩ {|ϕ| > ϕ0} = ∅, then |T−1W | 6 Λ1|W |.
We want to iterate these bounds.

Let δ ∈ (0, δCM], W ∈ Ŵs with |W | < δ, and Wi ∈ Iδn(W ). Let V ⊂W corresponding
to Wi, that is V = TnWi. Thus, for all 1 6 j 6 n, we have |T−jV | = |Tn−jWi| 6 δ/3.
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We can decompose V =
⊔

i0∈I0
V 0
i0,graz∪

⊔
j0∈J0

V 0
j0,exp such that: for all i0 ∈ I0, T−1V 0

i0,graz ⊂

{|ϕ| > ϕ0}, and thus |T−1V 0
i0,graz| 6 C|V 0

i0,graz|1/2, and for all j0 ∈ J0, T−1V 0
j0,exp ⊂ {|ϕ| <

ϕ0}, and thus |T−1V 0
j0,exp| 6 Λ1|V 0

j0,exp|. We can perform the same decomposition for
V 0
i0,graz or V 0

j0,exp instead of V :

V 0
i0,graz =

⊔
i1

V 1,i0
i1,graz ∪

⊔
j1

V 1,i0
j1,exp , V 0

j0,exp =
⊔
i1

V 1,j0
i1,graz ∪

⊔
j1

V 1,j0
j1,exp.

We can iterate this decomposition until having a decomposition of T−nV = Wi. Notice
that since the stable curves T−jV have length at most δ/3 6 δCM/3 and are uniformly
transverse to S0, they can cross {|ϕ| > ϕ0} at most B times, where B > 0 is a constant
uniform in W . Thus the number of pieces at each decomposition is bounded by 2B.

Thus Wi = T−nV =
⊔

∗∈{graz,exp}
αk∈IktJk

V
n,α0,...,αn−1
αn,∗ , where the union is made of at most (2B)n

elements we can estimate the length.

Consider first the case n 6 n0. By definition, s0 is such that s0 = sup
M

1
n0

n0−1∑
k=0

1{|ϕ|>ϕ0} ◦

T k < 1. Thus, for each V
n,α0,...,αn−1
αn,∗ there are at most s0n0 indices αk ∈ Ik. Thus

|V n,α0,...,αn−1
αn,∗ | 6 C2Λn0

1 |V |2
−s0n0 . Therefore

|Wi| = |T−n0V | 6 (2B)n0C2Λn0
1 |V |

2−s0n0 6 C̃|W |2−s0n0
, ∀Wi ∈ Iδn(W ), n 6 n0, δ 6 δCM

(3.3.2)

Now, consider the case n = kn0 + l, for k > 1 and 0 6 l < n0. By construction, if
Wi ∈ Iδn(W ), then T lWi ⊂ W 0

i ∈ Iδkn0
(W ) and Tn0W j

i ⊂ W j+1
i ∈ Iδ(k−j−1)n0

(W ) for all
0 6 j 6 k − 1. Thus, we can iterate (3.3.2):

|Wi| 6 C̃|W 0
i |2
−s0n0 6 C̃

∑j

m=0 2−ms0n0 |W j
i |

2−js0n0 6 C̃2|W |2−(k+1)s0n0

and so |Wi| 6 C̃2|W |2−ns0 for all Wi ∈ Iδn(W ), n > n0 and all W ∈ Ŵs with |W | < δCM.
Therefore, if δ 6 min(C̃−2, δCM), we have( log |W |

log |Wi|

)γ̄
6

(
2s0n

(
1− log C̃2

log |Wi|

))γ̄
6 2(ns0+1)γ̄ , ∀Wi ∈ Iδn(W ),

since |Wi| 6 δ.
(a) Let m > 1 and W ∈ Ŵs with |W | < δ 6 min(C̃−2, δCM). First, we want to estimate
the number of smooth components of T−lW , for 0 6 l 6 2m. The problem is the same as
knowing the number of connected components of W r S−l. Now, by (3.3.1), at most Kl
curves in S−l can intersect at a given point. Since W and S−l are uniformly transverse, for
each 0 6 l 6 2m there exists δ(l) such that if |W | < δ(l) then W r S−l has at most Kl + 1
connected components. Let δ0 := min{δ(l) | 0 6 l 6 2m}.

Let n > 1, δ ∈ (0, δ0] and W ∈ Ŵs with |W | < δ. We want to estimate #Iδn(W ). We
prove by induction that #Iδjm(W ) 6 (Km+ 1)j . For j = 1, this follows from the choice of
δ0. Since elements of Iδ(j+1)m(W ) are of the form V ∈ Iδm(Wi) for Wi ∈ Iδjm(W ), we have

#Iδ(j+1)m(W ) 6 (Km+ 1)#Iδjm(W ) 6 (Km+ 1)j+1.

Now for estimating #Iδjm+l(W ), 0 6 l < m, we only need to modify the last step:

#Iδjm+l(W ) 6 (K(m+ l) + 1)#Iδ(j−1)m(W ) 6 2(Km+ 1)j .
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Therefore, #Iδn(W ) 6 2(Km+ 1)n/m, for all n > 1.
Finally, we have that for n > n0∑

Wi∈Iδn(W )

( log |W |
log |Wi|

)γ
|eSng|C0(Wi) 6 en sup g2(ns0+1)γ̄#Iδn(W )

6 2(ns0+1)γ+1(Km+ 1)n/men sup g

(b) Let δ 6 δ0, and W ∈ Ŵs with |W | < δ. We start by giving an estimate on∑
Wi∈Gδn(W )

|eSng|C0(Wi). Since the border of elements ofM0
−n is contained in S−l, by uniform

transversality, each element ofM0
−n is crossed at most one time by W . Thus, each element

ofMn
0 is crossed at most one time by T−nW . Now, since the diameter of elements ofMn

0
is bounded uniformly in n by some constant C, there can be no more than 2Cδ−1 elements
of Gδn(W ) in a single element ofMn

0 . Thus∑
Wi∈Gδn(W )

|eSng|C0(Wi) 6 2Cδ−1 ∑
A∈Mn

0

|eSng|C0(A) (3.3.3)

First, in the case |W | > δ/2, the estimate

∑
Wi∈Gδn(W )

( log |W |
log |Wi|

)γ̄
|eSng|C0(Wi) 6 2Cδ−12((n∨n0)s0+1)γ̄ ∑

A∈Mn
0

|eSng|C0(A),

is enough for what we need.
Now, assume that |W | < δ/2. Let F1(W ) denote those V ∈ Gδ1(W ) whose length is at

least δ/2. Inductively, define Fj(W ), for 2 6 j 6 n− 1, to contain those V ∈ Gδj (W ) whose
length is at least δ/2, and such that T kV is contained in an element of Gδj−k(W )rFj−k(W )
for any 1 6 k 6 j − 1. Thus Fj(W ) contains elements of Gδj (W ) that are “long for the first
time” at time j.

We group Wi ∈ Gδn(W ) by its “first long ancestor” as follows. We say Wi has first long
ancestor 2 V ∈ Fj(W ) for 1 6 j 6 n − 1 if Tn−jWi ⊆ V . Note that such a j and V are
unique for each Wi if they exist. If no such j and V exist, then Wi has been forever short
and so must belong to Iδn(W ). Denote by An−j(V ) the set of Wi ∈ Gδn(W ) corresponding
to one V ∈ Fj(W ), that is

An−j(V ) := {Wi ∈ Gδn(W ) | Tn−jWi ⊂ V }.

By construction, we have the relation

Gδn(W ) r

n−1⊔
j=1

⊔
V ∈Fj(W )

An−j(V )

 = Iδn(W ).

2. Note that “ancestor” refers to the backwards dynamics mapping W to Wi.
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Therefore∑
Wi∈Gδn(W )

( log |W |
log |Wi|

)γ
|eSng|C0(Wi)

=
n−1∑
j=1

∑
Vl∈Fj(W )

∑
Wi∈An−j(Vl)

( log |W |
log |Wi|

)γ
|eSng|C0(Wi) +

∑
Wi∈In(W )

( log |W |
log |Wi|

)γ
|eSng|C0(Wi)

6
n−1∑
j=1

∑
Vl∈Fj(W )

( log |W |
log |Vl|

)γ
|eSjg|C0(Vl)

∑
Wi∈An−j(Vl)

( log |Vl|
log |Wi|

)γ
|eSn−jg|C0(Wi)

+ 2((n∨n0)s0+1)γ(Km+ 1)n/men sup g

6 2γ+1Cδ−1
n−1∑
j=1

∑
Vl∈Fj(W )

( log |W |
log |Vl|

)γ
|eSjg|C0(Vl)

∑
A∈Mn−j

0

|eSng|C0(A)

+ 2((n∨n0)s0+1)γ(Km+ 1)n/men sup g

6 22γ+1Cδ−1
n∑
j=1

2(j∨n0)s0γ(Km+ 1)j/mej sup g ∑
A∈Mn−j

0

|eSng|C0(A).

where we have applied part (a) from time 1 to time j and the first estimate in part (b)
from time j to time n, since each |V`| > δ/2.

3.3.2 Fragmentation Lemmas

Here, given a potential g, we introduce the conditions of Small Singular Pressure (SSP.1 and
SSP.2) which are crucial for the existence and the statistical properties of the equilibrium
states µg that will be constructed in Section 3.6. We prove in Lemma 3.3.3, Corollary 3.3.6
and Lemma 3.3.4 that there exist potentials satisfying simultaneously the conditions SSP.1
and SSP.2. These conditions and their consequences will be used in Section 3.3.3.

In what follows, we will always assume that the potential g is such that P∗(T, g)−sup g >
s0 log 2. Thus, there exists m large enough such that

1
m

log(Km+ 1) < P∗(T, g)− sup g − s0 log 2,

and we choose δ0 = δ0(m) to be the corresponding length scale from Lemma 3.3.1. Notice
that m, and therefore also δ0, depend on g.

In order to state the results of this subsection, we give a precise definition of SSP.1.
First, we introduce some notations.

Let Lδu(M0
−n) denote the elements ofM0

−n whose unstable diameter 3 is at least δ/3, for
some δ ∈ (0, δ0]. Similarly, let Lδs(Mn

0 ) denote the elements ofMn
0 whose stable diameter

is at least δ/3. Recall that the boundary of the partition formed byMn
0 is comprised of

stable curves belonging to Sn = ∪nj=0T
−j(S0) ⊂ Ŵs.

Define

`sn(g, δ) := inf{
∑

V ∈Lδn(W )
|eSng|C0(V ) |W ∈ Ŵs, δ3 6 |W | 6 δ},

`un(g, δ) := inf{
∑

V ∈Lδn(W )
|eS
−1
n g|C0(V ) |W ∈ Ŵu, δ3 6 |W | 6 δ},

3. Recall that the unstable diameter of a set is the length of the longest unstable curve contained in
that set.
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where in the second line Lδn(W ), W ∈ Ŵu, is defined similarly as in the case W ∈ Ŵs, but
replacing T−1 by T in the definitions, and S−1

n g :=
∑n
i=1 g ◦ T−i = Sng ◦ T−n.

Definition 3.3.2 (SSP.1). A potential g such that P (T, g) − sup g > s0 log 2 is said to
have ε-SSP.1 (small singular pressure), for some ε > 0, if

there exist δ = δ(ε) ∈ (0, δ0] and n1 ∈ N such that (3.3.4)∑
Wi∈Lδn(W )

|eSng|C0(Wi)∑
Wi∈Gδn(W )

|eSng|C0(Wi)
>

1− 2ε
1− ε , ∀n > n1 ∀W ∈ Ŵs with |W | > δ/3 ,

the sequences (en sup g `sn(g, δ)−1)n>n1 and (en sup g `un(g, δ)−1)n>n1 are summable,
(3.3.5)

and the time reversal of (3.3.4) holds. More precisely, we call time reversal of (3.3.4) the
same estimate but replacing Sng and W ∈ Ŵs with S−1

n g =
∑n
i=1 g ◦ T−i and W ∈ Ŵu.

Notice that (3.3.4) (resp. its time reversal) implies that `sn(g, δ) (resp. `un(g, δ)) is nonzero
for all n > n1.

A potential is said to have SSP.1 if it has ε-SSP.1 for some ε 6 1/4.

The following lemma bootstraps from Lemma 3.3.1 and will be crucial to get the lower
bound on the spectral radius:

Lemma 3.3.3. If g is a (M1
0, α)-Hölder potential such that P (T, g)− sup g > s0 log 2 and

log Λ > sup g − inf g, then g satisfies (3.3.4), as well as its time reversal, for all ε > 0.

Proof. Fix ε > 0. Choose n1 so large that 6CC−1
1 n1(Kn1+1)en1(sup g−inf g−log Λ) < ε, where

C is the constant from Lemma 3.2.3 and C1 is such that |T−nW | > C1Λn|W | whenever
W ∈ Ŵs. Next, choose δ > 0 sufficiently small that if W ∈ Ŵs with |W | < δ, then T−nW
comprises at most Kn+ 1 smooth pieces of length at most δ0 for all 0 6 n 6 2n1.

Let W ∈ Ŵs with |W | > δ/3. We shall prove the following equivalent inequality for
n > n1: ∑

Wi∈Sδn(W )
|eSng|C0(Wi)∑

Wi∈Gδn(W )
|eSng|C0(Wi)

6
ε

1− ε. (3.3.6)

For n > n1, write n = kn1 + l for some 0 6 l < n1. If k = 1, the above inequality is
clear since Sδn1+l(W ) contains at most K(n1 + l) + 1 components by assumption on δ and
n1, while |T−n1−lW | > C1Λn1+l|W | > C1Λn1+lδ/3. Thus Gδn(W ) must contain at least
C1Λn1+l/3 curves since each has length at most δ. Thus,∑
Wi∈Sδn(W )

|eSng|C0(Wi)∑
Wi∈Gδn(W )

|eSng|C0(Wi)
6 3K(n1 + l) + 1

C1Λn1+l
e(n1+l) sup g

e(n1+l) inf g 6 6C−1
1 (Kn1+1)en1(sup g−inf g−log Λ) < ε,

where the last inequality holds by choice of n1.
For k > 1, we split n = kn1 + l, 0 6 l < n1, into k − 1 blocks of length n1 and the last

block of length n1 + l. For each V ∈ Gδn(W ) r Iδn(W ), let j < n be the greatest integer
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such that Tn−jV is contained in an element Va of Lδj(W ) and for all j < i < n, Tn−iV is
contained in an element of Sδi (W ). We call Va the most recent long ancestor of V and j
its age. If such a j does not exists, it means that for all i < n, Tn−iV is short, that is
V ∈ Iδn(W ) and we set j = 0 in this case.

We group elements of Sδn(W ) by their age in [0, n1−1], [n1, 2n1−1], . . . , [(k−2)n1, (k−
1)n1 − 1] and [(k − 1)n1, n− 1]. In other words, we consider the following decomposition

Sδn(W ) =
k−2⊔
q=0

(q+1)n1−1⊔
j=qn1

⊔
V ∈Lδj (W )

Iδn−j(V )

 t
 n−1⊔
j=(k−1)n1

⊔
V ∈Lδj (W )

Iδn−j(V )

. (3.3.7)

We can therefore split the left hand side of (3.3.6) into two manageable parts. For this, we
rely on Lemma 3.3.1 for γ = 0 and the fact that

Gδn(W ) ⊃
⊔

V ∈Lδj (W )

Gδn−j(V ), ∀ 0 < j < n.

Thus, using Lemma 3.2.3, we have

k−2∑
q=0

(q+1)n1−1∑
j=qn1

∑
V ∈Lδj (W )

∑
Wi∈Iδn−j(V )

|eSng|C0(Wi)∑
Wi∈Gδkn1+l(W )

|eSng|C0(Wi)

6
k−2∑
q=0

(q+1)n1−1∑
j=qn1

∑
V ∈Lδj (W )

|eSjg|C0(V )
∑

Wi∈Iδn−j(V )
|eSn−jg|C0(Wi)

C−1 ∑
V ∈Lδj (W )

|eSjg|C0(V )
∑

Wi∈Gδn−j(V )
e(n−j) inf g

6
k−2∑
q=0

6CC−1
1 n1(Kn1 + 1)k−qe(k−q)n1(sup g−inf g−log Λ)

6
k−2∑
q=0

εk−q =
k∑
q=2

εq

Similarly, for the second part we have

n−1∑
j=(k−1)n1

∑
V ∈Lδj (W )

∑
Wi∈Iδn−j(V )

|eSng|C0(Wi)∑
Wi∈Gδkn1+l(W )

|eSng|C0(Wi)

6
n−1∑

j=(k−1)n1

∑
V ∈Lδj (W )

|eSjg|C0(V )
∑

Wi∈Iδn−j(V )
|eSn−jg|C0(Wi)

C−1 ∑
V ∈Lδj (W )

|eSjg|C0(V )
∑

Wi∈Gδn−j(V )
e(n−j) inf g

6 6CC−1
1 n1(Kn1 + 1)en1(sup g−inf g−log Λ) 6 ε

Summing these two estimates, we obtain (3.3.6).
The time reversal is obtained from the same proof by changing the construction of the

set Gδn(W ) (and thus Lδn(W ), Sδn(W ) and Iδn(W )) so that elements of Gδn(W ) are contained
in TnW (instead of T−n(W )) for W ∈ Ŵu.
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Notice that if ε 6 1/4 and δ1 6 δ0 and n1 are the corresponding δ and n1 from the
ε-SSP.1 condition, then we have for all W ∈ Ŵs with |W | > δ1/3 and n > n1∑

Wi∈L
δ1
n (W )

|eSng|C0(Wi) >
2
3

∑
Wi∈G

δ1
n (W )

|eSng|C0(Wi) , (3.3.8)

In particular, since Gδ1n (W ) = Lδ1n (W ) t Sδ1n (W ), we also get that∑
Wi∈L

δ1
n (W )

|eSng|C0(Wi) > 2
∑

Wi∈S
δ1
n (W )

|eSng|C0(Wi) .

The following lemma will be used to get both lower and upper bounds on the spectral
radius via Proposition 3.3.7:

Lemma 3.3.4. Let g be a (M1
0, α)-Hölder potential such that P∗(T, g)− sup g > s0 log 2

and which has SSP.1. Let δ1 and n1 be the corresponding parameters associated with SSP.1.
Then there exist Cn1 > 0 and n2 > n1 such that for all n > n2,∑

A∈Lδ1u (M0
−n)

|eS
−1
n g|C0(A) > Cn1δ1

∑
A∈M0

−n

|eS
−1
n g|C0(A),

∑
A∈Lδ1s (Mn

0 )

|eSng|C0(A) > Cn1δ1
∑

A∈Mn
0

|eSng|C0(A).
(3.3.9)

Furthermore, if g is a (M1
0, α)-Hölder potential with P∗(T, g) − sup g > s0 log 2 and

log Λ > sup g − inf g, then g has SSP.1.

Proof. We prove the lower bound for Lδ1s (Mn
0 ). The lower bound for Lδ1u (M0

−n) then
follows by time reversal.

First, we need to define sets that will be relevant only here. Let

Is(Mn
0 ) := {A ∈Mn

0 | diams(A) < δ1/3}

be the complement of Lδ1s (Mn
0 ) inMn

0 , and

Is(T−jS0) := {unstable curves in T−j(S0) with length less than δ1/3}.

Define also Ls(T−jS0) as the complement of Is(T−jS0) in Gδ1j (S0).
We will deduce the claim by estimating the sum of norms of eSng over Is(Mn

0 ) by the one
over Lδ1s (Mn

0 ). To do so, we estimate the sum over Is(Mn
0 ) with the sums over Is(T−jS0).

Then, using (3.3.4) we estimate the sum over Is(T−jS0) with sums over Ls(T−jS0). Finally,
we estimate sums over Ls(T−jS0) with a sum over Lδ1s (Mn

0 ).
In order to estimate the sum over Is(Mn

0 ), first remark that if A ∈ Mn
0 then ∂A ⊂

Sn =
⋃n
j=0 T

−jS0. Let A ∈ Is(Mn
0 ). We distinguish two cases:

(a) For some 1 6 j 6 n, ∂A contains a point of intersection between two curves of T−jS0.
Since such intersection point is the image by T−j+1 of an intersection point between curves
of T−1S0, which are finite, and thank to the linear complexity (3.3.1), we get that there
are at most K2n elements of Is(Mn

0 ) in this case.
(b) ∂A only contains intersection points between curves belonging to T−jS0 for different
j. Let jA be the maximal 1 6 j 6 n such that A ∩ T−jS0 6= ∅, and γ ∈ T−jAS0 such
that γ ∩A 6= ∅. Notice that γ must intersect other curves from ∂A. These curves belong
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to T−jS0 for some j < jA. Applying T j , it appears that γ must terminates at these
intersection points, and thus γ ⊂ ∂A. Since γ is a stable curve, γ belongs to Is(T−jAS0)
by assumption on A. Finally, such a curve γ belong to at most 2 elements of Is(Mn

0 ).
Therefore∑
A∈Is(Mn

0 )
|eSng|C0(A) 6 K2ne

n sup g + C
n∑
j=1

∑
W∈Is(T−jS0)

|eSng|C0
+(W ) + |eSng|C0

−(W ),

(3.3.10)

where we have extended eSng by Hölder continuity to W from both sides – and noted
| · |C0

+(W ) and | · |C0
−(W ) the corresponding norms – and C is the constant from Lemma 3.2.3.

In order to use (3.3.4), we decompose S0 =
⊔l0
i=1 Ui where each Ui is a connected

curve such that δ1
3 6 |T−1Ui| 6 δ1. But first we need to compare the sum indexed

by Is(T−jS0) with the one indexed by Is(Gδ1j−1(Ui)). Let W ∈ Is(T−jS0). Thus, each
W ∩T−jUi is a single maximal smooth component of length less than δ1/3. In other words,
W ∩ T−jUi ∈ Is(Gδ1j−1(Ui)). Therefore

∑
W∈Is(T−jS0)

|eSng|C0
±(W ) 6

l0∑
i=1

∑
W∈Is(G

δ1
j−1(T−1Ui))

|eSng|C0
±(W ). (3.3.11)

Now, using SSP.1 (3.3.4), in the case j > n1, we get that∑
W∈Is(G

δ1
j−1(T−1Ui))

|eSng|C0
±(W ) 6

1
2e

(n−j+1) sup g ∑
W∈Ls(G

δ1
j−1(T−1Ui))

|eSj−1g|C0
±(W ). (3.3.12)

In order to estimate this last sum with the sum indexed by Ls(Gδ1n−1(T−1Ui)), notice
that

Ls(Gδ1n−1(T−1Ui)) ⊃
⊔

V ∈Ls(G
δ1
j−1(T−1Ui))

Ls(Gδ1n−j(V )).

Thus ∑
W∈Ls(G

δ1
n−1(T−1Ui))

|eSng|C0
±(W ) >

∑
W∈Ls(G

δ1
j−1(T−1Ui))

∑
V ∈Ls(G

δ1
n−j(W ))

|eSn−jg+Sjg◦Tn−j |C0
±(V )

> C−2einf g ∑
W∈Ls(G

δ1
j−1(T−1Ui))

|eSj−1g|C0
±(W )

∑
V ∈Ls(G

δ1
n−j(W ))

|eSn−jg|C0
±(V )

> C−2einf g `sn−j(g, δ1)
∑

W∈Ls(G
δ1
j−1(T−1Ui))

|eSj−1g|C0
±(W ),

where we used Lemma 3.2.3 for the second inequality, and the definition of `sn−j(g, δ1)
for the third inequality. Notice however that (3.3.4) ensures that `sn−j(g, δ1) 6= 0 only for
n − j > n1. We will treat these troublesome j in a second time. Assume for now that
n1 6 j 6 n− n1. Combining the above lower bound with (3.3.11) and (3.3.12), we get∑

W∈Is(T−jS0)
|eSng|C0

±(W ) 6 C̄ e(n−j) sup g`sn−j(g, δ1)−1 ∑
W∈Ls(T−nS0)

|eSng|C0
±(W ) , (3.3.13)

where we used that
⊔l0
i=1 Ls(G

δ1
j−1(T−1Ui)) ⊂ Ls(T−jS0) – which is true if we choose the

δ1-scaling G1(T−jS0) to be adapted with the decomposition S0 =
⊔
i Ui.
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Now, if n− n1 6 j 6 n, then we obtain from similar computations
∑

W∈Is(T−jS0)
|eSng|C0

±(W ) 6
1
2C

2einf ge(n−j+1) sup g`sn1(g, δ1)−1 ∑
W∈Ls(T−j−n1S0)

|eSn1+jg|C0
±(W )

(3.3.14)

Finally, we estimate the sum over Ls(T−nS0) with the sum over Lδ1s (Mn
0 ). To do so, we

use similar arguments than for the estimate (3.3.10). Let W ∈ Ls(T−nS0). We distinguish
the two following cases:
(a) W intersects another curve from T−nS0. There are at most 2K2 elements of Ls(T−nS0)
in this case,
(b) W does not intersect other curves from T−nS0. In that case, W must be contained
in the boundary of an element ofMn

0 , and thus an element of Lδ1s (Mn
0 ). Now, there are

at most 2Cδ−1
1 elements of Ls(T−nS0) in the boundary of a single element of Lδ1s (Mn

0 ),
where C is a large enough constant depending only on the billiard table.

Thus ∑
W∈Ls(T−nS0)

|eSng|C0
±(W ) 6 2K2e

n sup g + Cδ−1
1

∑
A∈Lδ1s (Mn

0 )

|eSng|C0(A). (3.3.15)

Similarly, for all n− n1 6 j 6 n,∑
W∈Ls(T−n1−jS0)

|eSn1+jg|C0
±(W ) 6 2K2e

(n1+j) sup g + Cδ−1
1

∑
A∈Lδ1s (Mn1+j

0 )

|eSn1+jg|C0(A).

(3.3.16)

Putting together (3.3.10), (3.3.13) and (3.3.15), as well as (3.3.14) and (3.3.16), we get

∑
A∈Is(Mn

0 )
|eSng|C0(A) 6 K2ne

n sup g + C
n1−1∑
j=1

∑
W∈Is(T−jS0)

|eSng|C0
+(W ) + |eSng|C0

−(W )

+ C
n−n1∑
j=n1

∑
W∈Is(T−jS0)

|eSng|C0
+(W ) + |eSng|C0

−(W )

+ C
n∑

j=n−n1+1

∑
W∈Is(T−jS0)

|eSng|C0
+(W ) + |eSng|C0

−(W )

6 (K2n+ C̄n1)en sup g + C̄
n−n1∑
j=n1

ej sup g `sj(g, δ1)−1 ∑
W∈Ls(T−nS0)

|eSng|C0
+(W ) + |eSng|C0

−(W )

+ C
n∑

j=n−n1+1
e(n−j) sup g`sn1(g, δ1)−1 ∑

W∈Ls(T−j−n1S0)
|eSj+n1g|C0

+(W ) + |eSj+n1g|C0
−(W )

6 (K2n+ C̄n1)en sup g + C̃

2K2e
n sup g + Cδ−1

1
∑

A∈Lδ1s (Mn
0 )

|eSng|C0(A)


+

n∑
j=n−n1+1

C ′n1C
′
g

2K2e
(n1+j) sup g + Cδ−1

1
∑

A∈Lδ1s (Mj+n1
0 )

|eSj+n1g|C0(A)

,
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where in the last inequality we used (3.3.5) and the fact that n−n1 +1 6 j 6 n is equivalent
to 0 6 n− j 6 n1 − 1, that is, in the second sum over j after the second inequality symbol,
the e(n−j) sup g are uniformly bounded (by C ′g).

We now relate the sum over Lδ1s (Mj+n1
0 ) to the sum over Lδ1s (Mn

0 ). To do so, notice
that if A ∈ Lδ1s (Mn

0 ), then it contains at most Bj+n1−n elements of Lδ1s (Mj+n1
0 ), where

B = |P|. On the other hand, an element A′ ∈ Lδ1s (Mj+n1
0 ) is contained in exactly one

element of Lδ1s (Mn
0 ). Thus∑

A∈Lδ1s (Mj+n1
0 )

|eSj+n1g|C0(A) =
∑

A∈Lδ1s (Mj+n1
0 )

∑
A′∈Lδ1s (Mn

0 )
A⊂A′

|eSj+n1g|C0(A)

6
∑

A∈Lδ1s (Mj+n1
0 )

∑
A′∈Lδ1s (Mn

0 )
A⊂A′

en1 sup g|eSjg|C0(A′)

6
∑

A′∈Lδ1s (Mn
0 )

∑
A∈Lδ1s (Mj+n1

0 )
A⊂A′

en1 sup g|eSjg|C0(A′)

6 Bj+n1−nen1 sup g ∑
A∈Lδ1s (Mn

0 )

|eSjg|C0(A),

and therefore,
n∑

j=n−n1+1

∑
A∈Lδ1s (Mj+n0

0 )

|eSj+n1g|C0(A) 6
n∑

j=n−n1+1
Bj+n1−nen1 sup g ∑

A∈Lδ1s (Mn
0 )

|eSjg|C0(A)

6
n∑

j=n−n1+1
Bj+n1−nen1 sup ge(n−j) inf g ∑

A∈Lδ1s (Mn
0 )

|eSng|C0(A)

6 C̃n1

∑
A∈Lδ1s (Mn

0 )

|eSng|C0(A).

Using this last estimates, we obtain

∑
A∈Is(Mn

0 )
|eSng|C0(A) 6 (K2n+ C̄n1 + C ′n1C

′
gK2)en sup g

+ (C̃C + C ′n1C
′
gC̃n1)δ−1

1
∑

A∈Lδ1s (Mn
0 )

|eSng|C0(A),

6 C1e
n sup g + C2δ

−1
1

∑
A∈Lδ1s (Mn

0 )

|eSng|C0(A),

where C̃ is a constant coming from the summability assumption (3.3.5), and C̄n1 depends
only on n1 and g.

Finally, since Is(Mn
0 ) t Lδ1s (Mn

0 ) =Mn
0 , we get that

∑
A∈Lδ1s (Mn

0 )

|eSng|C0(A) >

∑
A∈Mn

0

|eSng|C0(A) − C1e
n sup g

1 + C2δ
−1
1

.
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Since lim
n→+∞

1
n log

∑
A∈Mn

0

|eSng|C0(A) = P∗(T, g) and by the assumption P∗(T, g) > sup g,

there is an integer n2 such that for all n > n2,∑
A∈Mn

0

|eSng|C0(A) − C1e
n sup g >

1
2
∑

A∈Mn
0

|eSng|C0(A).

Thus, there exists Cn1 > 0 such that for all n > n2 (3.3.9) holds.

We now prove the second part of Lemma 3.3.4. Assume that g is a (M1
0, α)-Hölder

potential with P∗(T, g)− sup g > s0 log 2 and log Λ > sup g − inf g. From the convexity of
the topological pressure (Theorem 3.2.1), we get that t 7→ P∗(T, tg) is a convex function.
Thus, the map t 7→ P∗(T, t(g − sup g)) = P∗(T, tg)− t sup g is continuous on [0, 1]. Since
for all s < t we have∑
A∈Mn

0

|eSnt(g−sup g)|C0(A) 6 en(t−s) sup(g−sup g) ∑
A∈Mn

0

|eSns(g−sup g)|C0(A) =
∑

A∈Mn
0

|eSns(g−sup g)|C0(A),

the map is nonincreasing. Thus

P∗(T, g)− sup g = P∗(T, g − sup g) 6 P∗(T, 0) = h∗,

where h∗ is the topological entropy from [BD20]. Therefore we have h∗ > s0 log 2 and
estimates from [BD20] can be used. For all W ∈ Ŵs with δ1 > |W | > δ1/3 and all n > n1,∑

V ∈Lδ1n (W )

|eSng|C0(V ) > en inf g#Lδ1n (W ) > 2
3e

n inf g#Gδ1n (W ) > 2
3c0e

n inf g#Mn
0

>
2
3c0e

n(inf g+P∗(T,0))

where we used [BD20, Lemma 5.2] for the second inequality, and Propositions 4.6 and 5.5
from [BD20] in the third inequality 4.

Thus we get that `sn(g, δ1) > 2
3c0e

n(inf g+P∗(T,0)). Since 5 P∗(T, 0) = h∗ > log Λ, we
then get the summability of the sequence (en sup g`sn(g, δ1)−1)n>n1 . The summability of
en sup g`un(g, δ1)−1 is obtained similarly by considering lower bounds on #Lδ1u (W ), also given
in [BD20].

We now introduce the precise definition of SSP.2:

Definition 3.3.5 (SSP.2). A potential g is said to have ε-SSP.2 if it has ε-SSP.1, if there
exists n̄1 : (0,+∞)→ N such that∑

Wi∈Lδn(W )
|eSng|C0(Wi)∑

Wi∈Gδn(W )
|eSng|C0(Wi)

>
1− 3ε
1− ε , ∀W ∈ Ŵs, ∀n > n̄1(|W |), (3.3.17)

and if the time reversal 6 of (3.3.17) holds, where δ is the corresponding constant from
ε-SSP.1. A potential is said to have SSP.2 if it has ε-SSP.2 for some ε 6 1/4.

4. We can choose the scale δ1 from [BD20] to agree with the one here. The constant c0 comes
from [BD20, Proposition 5.5] and depends on δ1.

5. log Λ is a lower bound on the unstable Lyapunov exponent of T . Integrating against µSRB gives the
desired inequality.

6. As for (3.3.4), we call time reversal of (3.3.17) the same estimate but with Sng and W ∈ Ŵs replaced
by S−1

n g and W ∈ Ŵu.
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Corollary 3.3.6. If g is a (M1
0, α)-Hölder potential such that P (T, g)− sup g > s0 log 2

and log Λ > sup g − inf g, then there exists C2 > 0 such that g has ε-SSP.2 for all ε > 0
and n̄1(|W |) = C2n1

| log(|W |/δ)|
| log ε| , where δ and n1 are the corresponding constants from

Lemma 3.3.3.

Proof. From the Lemmas 3.3.3 and 3.3.4, such a potential has SSP.1. We thus only prove
(3.3.17).

The proof is essentially the same as the one for Lemma 3.3.3, except that for curves
shorter than δ/3 one must wait n . | log(|W |/δ)| for at least one component of Gδn(W ) to
belong to Lδn(W ).

More precisely, fix ε > 0 and the corresponding δ and n1 from Lemma 3.3.3. Let
W ∈ Ŵs with |W | < δ/3 and take n > n1. Decomposing Gδn(W ) and Sδn(W ) as in the
proof of Lemma 3.3.3, we estimate the second part as before. For the first part, we have to
split the sum between Iδn(W ) and the rest, which is estimated as before.

For the first part, concerning Iδn(W ), for δ sufficiently small, notice that since the flow
is continuous, either #Gδl (W ) 6 Kl + 1 by (3.3.1) or at least one element of Gδl (W ) has
length at least δ/3. Let n2 denote the first iterate l at which Gδl (W ) contains at least one
element of length more than δ/3. By the complexity estimate (3.3.1) and the fact that
|T−n2W | > C1Λn2 |W | by hyperbolicity of T , there exists C2 > 0, independent of W ∈ Ŵs,
such that n2 6 C2| log(|W |/δ)|.

Now, for n > n2,∑
Wi∈Iδn(W )

|eSng|C0(Wi) 6
∑

W ′∈Gδn2 (W )
|eSn2g|C0(W ′)

∑
Wi∈Iδn−n2

(W ′)

|eSn−n2g|C0(Wi)

6 K(Kn2 + 1)en2 sup g × 2(Kn1 + 1)
n−n2
n1 e(n−n2) sup g

and by hyperbolicity and Lemma 3.2.3,∑
Wi∈Gδn(W )

|eSng|C0(Wi) > C−1|eSn2g|C0(W ′)
∑

Wi∈Gδn−n2
(W ′)

e(n−n2) inf g

>
1
3C1C

−1en2 inf ge(n−n2)(inf g+log Λ)

where W ′ ∈ Gδn2(W ) is such that |W ′| > δ/3. Therefore,∑
Wi∈Iδn(W )

|eSng|C0(Wi)∑
Wi∈Gδn(W )

|eSng|C0(Wi)
6 6C−1

1 Cen2(sup g−inf g)K(Kn2 + 1)(Kn1 + 1)
n−n2
n1 e(n−n2)(sup g−inf g−log Λ)

6 2c−1
0 C2en2(sup g−inf g)K(Kn2 + 1)εn/n1 .

Since n2 6 C2| log(|W |/δ)|, we can bound this expression by ε by choosing some C2 > 0
and n large enough so that n/n1 > C2

log(|W |/δ)
log ε . For such n, the left hand side of (3.3.6) is

bounded by ε+ ε
1−ε 6

2ε
1−ε , which completes the proof of the corollary.

As usual, the time reversal of (3.3.17) is obtained by performing the same proof, but
with the time reversal counterpart of Gδn(W ), for unstable curves W .
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3.3.3 Exact Exponential Growth of Thermodynamic Sums – Cantor
Rectangles

It follows from the submultiplicativity in the characterisation of P∗(T, g) that

enP∗(T,g) 6 e− inf g ∑
A∈Mn

0

sup
x∈A

e(Sng)(x)

for all n. In this subsection, we shall prove a supermultiplicativity statement (Lemma 3.3.9)
from which we deduce the upper bound for

∑
A∈Mn

0
supx∈A e(Sng)(x) in Proposition 3.3.10

giving the upper bound in Proposition 3.5.1, and ultimately the upper bound on the
spectral radius of Lg on B.

The following key estimate is a lower bound on the weighted rate of growth of stable
curves having a certain length. The proof will crucially use the fact that the SRB measure
is mixing in order to bootstrap from SSP.1.

Proposition 3.3.7. Let g be a (M1
0, α)-Hölder potential with P∗(T, g)− sup g > s0 log 2

and which has SSP.1. Let δ1 be the value of δ from the condition SSP.1. Then there exists
c0 > 0 such that for all W ∈ Ŵs with |W | > δ1/3 and n > 1, we have∑

Wi∈G
δ0
n (W )

|eSng|C0(A) > c0
∑

A∈M0
−n

|eS
−1
n g|C0(A).

The constant c0 depends on δ1.

The proof relies crucially on the notion of Cantor rectangles. We introduce this notion as
in [BD20, Definition 5.7]. Let W s(x) and W u(x) denote the maximal smooth components
of the local stable and unstable manifolds of x ∈M .

Definition 3.3.8. A solid rectangle D in M is a closed connected set whose boundary
comprises precisely four nontrivial curves: two stable manifolds and two unstable manifolds.
Given a solid rectangle D, the (locally maximal) Cantor rectangle R in D is formed by
taking the points in D whose local stable and unstable manifolds completely cross D. Cantor
rectangles have a natural product structure: for any x, y ∈ R, then W s(x) ∩W u(y) ∈ R.
In [CM06, Section 7.11], Cantor rectangles are proved to be closed, and thus contain their
outer boundaries, which are contained in the boundary of D. With a slight abuse, we will
call this pairs of stable and unstable manifolds the stable and unstable boundaries of R.
In this case, we denote D by D(R) to emphasize that it is the smallest solid rectangle
containing R.

Proof. Using [CM06, Lemma 7.87], we may cover M by Cantor rectangles R1, ..., Rk
satisfying

inf
x∈Ri

mWu(W u(x) ∩Ri)
mWu(W u(x) ∩D(Ri))

> 0.9 , ∀1 6 i 6 k, (3.3.18)

whose stable and unstable boundaries have lengths at most 1
10δ1, with the property that

any stable curve of length at least δ1/3 properly crosses at least one of them. A stable curve
W ∈ Ŵs is said to properly cross R if W crosses both unstable sides of R, W does not
cross any stable manifolds W s(x) ∩D(R) for x ∈ R, and the point W ∩W u(x) subdivides
the curve W u(x) ∩D(R) in a ratio between 0.1 and 0.9 (i.e. W does not come to close to
either stable boundary of R). The cardinality k is fixed, depending only on δ1.
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Recall that Lδ1u (M0
−n) denotes the elements ofM0

−n whose unstable diameter is longer
than δ1/3. We claim that for all n ∈ N, at least one Ri is fully crossed in the unstable
direction by a subset L̃ ofM0

−n such that

∑
A∈L̃

|eS
−1
n g|C0(A) >

1
k

∑
A∈Lδ1u (M0

−n)

|eS
−1
n g|C0(A). (3.3.19)

Notice that if A ∈M0
−n, then ∂A is comprised of unstable curves belonging to ∪ni=1T

iS0,
and possibly S0. By definition of unstable manifolds, T iS0 cannot intersect the unstable
boundaries of the Ri; thus if A ∩Ri 6= ∅, then either ∂A terminates inside Ri or A fully
crosses Ri. Thus elements of Lδ1u (M0

−n) fully cross at least one Ri and so at least one Ri
must be fully crossed by a large fraction L̃ of Lδ1u (M0

−n) in the sense of (3.3.19), proving
the claim.

For each n ∈ N, denote by in the index of a rectangle Rin which is fully crossed by a
large enough subset L̃n of Lu(M0

−n), in the sense of (3.3.19).
Fix δ∗ ∈ (0, δ1/10) and for i = 1, ...k, choose a “high density" subset R∗i ⊂ Ri satisfying

the following conditions: R∗i has a non-zero Lebesgue measure, and for any unstable
manifold W u such that W u ∩R∗i 6= ∅ and |W u| < δ∗, we have mWu (Wu∩R∗i )

|Wu| > 0.9. (Such a
δ∗ and R∗i exist due to the fact that mWu-almost every y ∈ Ri is a Lebesgue density point
of the set W u(y) ∩Ri and the unstable foliation is absolutely continuous with respect to
µSRB or, equivalently, Lebesgue.)

Due to the mixing property of µSRB and the finiteness of the number of rectangles
Ri, there exist ε > 0 and n3 ∈ N such that for all 1 6 i, j 6 k and all n > n3,
µSRB(R∗i ∩ T−nRj) > ε. If necessary, we increase n3 so that the unstable diameter of the
set T−nRi is less than δ∗ for each i, and n > n3.

Now let W ∈ Ŵs with |W | > δ1/3 be arbitrary. Let Rj be a Cantor rectangle that is
properly crossed byW . Let n ∈ N and let in be as above. By mixing, µSRB(R∗in∩T

−n3Rj) >
ε. By [CM06, Lemma 7.90], there is a component of T−n3W that fully crosses R∗in in the
stable direction. Call this component V ∈ Gδ0n3(W ). Thus

∑
Wi∈G

δ0
n (V )

|eSng|C0(Wi) =
∑

Wi∈G
δ0
n (V )

|eS
−1
n g|C0(TnWi) >

∑
A∈L̃n

inf
A
|eS
−1
n g| > 1

Cg

∑
A∈L̃n

sup
A
|eS
−1
n g|

>
1
k

∑
A∈Lδ1u (M0

−n)

|eS
−1
n g|C0(A).
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We now have to relate the lhs to the analogous quantity where V is replace by W .

∑
Wi∈G

δ0
n (W )

|eSng|C0(Wi) =
∑

Vj∈G
δ0
n+n3

(W )

∑
Wi∈G

δ0
n (W )

Tn3Vj⊂Wi

|eSng|C0(Wi)

#{Vj ∈ Gδ0n+n3(W ) | Tn3Vj ⊂Wi}

>
∑

Vj∈G
δ0
n+n3

(W )

|eSng◦Tn3 |C0(Vj)
∑

Wi∈G
δ0
n (W )

Tn3Vj⊂Wi

1
#{Vj ∈ Gδ0n+n3(W ) | Tn3Vj ⊂Wi}

>
Cδ0

#Mn3
0
e−n3 sup g ∑

Vj∈G
δ0
n+n3

(W )

|eSn+n3g|C0(Vj) >
Cδ0

#Mn3
0
e−n3 sup g ∑

Vj∈G
δ0
n (V )

|eSn+n3g|C0(Vj)

>
Cδ0

#Mn3
0
e−n3(sup g−inf g) ∑

Vj∈G
δ0
n (V )

|eSng|C0(Vj)

>
1
kCg

Cδ0
#Mn3

0
e−n3(sup g−inf g) ∑

A∈Lδ1u (M0
−n)

|eS
−1
n g|C0(A)

> Cn1δ1
1
kCg

Cδ0
#Mn3

0
e−n3(sup g−inf g) ∑

A∈M0
−n

|eS
−1
n g|C0(A),

for all n > max{n2, n3}, where we used Lemma 3.3.4 for the last inequality. Thus the
proposition holds for all n > max{n2, n3}. It extends to all n ∈ N since there are finitely
many values of n to correct for.

Lemma 3.3.9 (Supermultiplicativity). There exists a constant c1 such that for all n ∈ N,
and all 0 < j < n, we have∑

A∈Mn
0

|eSng|C0(A) > c1
∑

A∈Mn−j
0

|eSn−jg|C0(A)
∑

A∈Mj
0

|eSjg|C0(A).

Proof. Fix n, j ∈ N with j < n. First, notice that∑
A∈Mn

0

|eSng|C0(A) >
∑

A∈Mn
0

sup
A
e(Sn−jg+S−1

j g)◦T j >
∑

A∈Mn−j
−j

sup
A
eSn−jg inf

A
eS
−1
j g

>
∑

A∈Mn−j
0

sup
A
eSn−jg

∑
B∈M0

−j
B∩A 6=∅

inf
B
eS
−1
j g

> Cg
∑

A∈Mn−j
0

|eSn−jg|C0(A)
∑

B∈M0
−j

B∩A 6=∅

|eS
−1
j g|C0(B)

> Cg
∑

A∈Mn−j
0

|eSn−jg|C0(A)
∑

B∈M0
−j

B∩A 6=∅

|eS
−1
j g|C0(B),

where we used Lemma 3.2.3 for the forth inequality.
Recall that Lδ1u (M0

−j) denotes the elements ofM0
−j whose unstable diameter is longer

than δ1/3. Similarly, Lδ1s (Mn−j
0 ) denotes those elements ofMn−j

0 whose stable diameter
is larger than δ1/3. By Lemma 3.3.4∑

A∈Lδ1s (Mn−j
0 )

|eSn−jg|C0(A) > Cn1δ1
∑

A∈Mn−j
0

|eSn−jg|C0(A), for n− j > n2.
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Let A ∈ Lδ1s (Mn−j
0 ) and let VA ∈ Ŵs be a stable curve in A with length at least δ1/3.

By Proposition 3.3.7, ∑
Wi∈G

δ0
j (VA)

|eSjg|C0(Wi) > c0
∑

B∈M0
−j

|eS
−1
j g|C0(B).

Each component of Gδ0j (VA) corresponds to one component of VA r S−j (up to subdivision
of long pieces in Gδ0j (VA)). Thus

∑
A∈Mn−j

0

|eSn−jg|C0(A)
∑

B∈M0
−j

B∩A 6=∅

|eS
−1
j g|C0(B) >

∑
A∈Lδ1s (Mn−j

0 )

|eSn−jg|C0(A)
∑

Wi∈G
δ0
j (VA)

|eS
−1
j g|C0(T jWi)

>
∑

A∈Lδ1s (Mn−j
0 )

|eSn−jg|C0(A)
∑

Wi∈G
δ0
j (VA)

|eSjg|C0(Wi)

> C
∑

A∈Mn−j
0

|eSn−jg|C0(A)
∑

B∈M0
−j

|eS
−1
j g|C0(B),

proving the lemma with c1 = c0Cn1C
2δ1 when n− j > n2. For n− j 6 n2, since

∑
A∈Mn−j

0

|eSn−j−1g|C0(A) 6

 ∑
A∈M1

0

|eg|C0(A)


n−j

we obtain the lemma by decreasing c1 since there are only finitely many values to correct
for.

Proposition 3.3.10 (Exact Exponential Growth). Let g be a (M1
0, α)-Hölder continuous

potential such that P∗(T, g)− sup g > 0 and which has SSP.1. Let c1 be the constant given
by Lemma 3.3.9. Then for all n ∈ N, we have∑

A∈Mn
0

|eSng|C0(A) 6
2
c1
enP∗(T,g).

Proof. Let ψ(n) := e−nP∗(T,g)
∑

A∈Mn
0

|eSng|C0(A). Suppose there exists n1 ∈ N such that

ψ(n1) > 2/c1, where c1 is the constant from Lemma 3.3.9. Then

ψ(2n1) > c1ψ(n1)2 = 1
c1

(c1ψ(n1))2.

Integrating this bound, we have inductively for any k > 1,

ψ(2kn1) > 1
c1

(c1ψ(n1))2k .

This implies that limk→+∞
1

2kn1
logψ(2kn1) > 1

n1
log 2 > 0, which contradicts the definition

of ψ(n) (since limn→+∞
1
n logψ(n) = 0). We conclude that ψ(n) 6 2/c1 for all n > 1.

Remark 3.3.11. Notice that for g = 0, the condition P∗(T, g) − sup g > s0 log 2 becomes
h∗ > s0 log 2, where h∗ is the topological entropy of T defined in [BD20]. This is precisely the
condition of sparse recurrence to singularities from [BD20], and as discussed there, we don’t
know any example of billiard table not satisfying this condition. Notice that by continuity,
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if h∗ > s0 log 2 holds, then P∗(T, g) − sup g > s0 log 2 holds for all g in a neighbourhood
of the zero potential. For potential g close enough to 0, we have log Λ > sup g − inf g.
Therefore, by Lemmas 3.3.3, 3.3.4 and Corollary 3.3.6, there exists a neighbourhood of
g = 0 (in the (M1

0, α)-Hölder topology) in which every potential has SSP.1 and SSP.2, and
thus all the consequent results from the present section also hold.

In particular, for any t ∈ R with |t| close enough to zero, the potential −tτ has SSP.1
and SSP.2.

3.3.4 Estimates on norms of the potential

In Section 3.6, we will need similar estimates as in the present section but with the C0

norm replaced by the Cβ norm, 0 < β < 1/3. The following lemma shows that previous
estimates are still valid up to a multiplicative constant.

Lemma 3.3.12. For every bounded (M1
0, α)-Hölder continuous potential g, there exists

C > 0 such that for all W ∈ Ws, all n > 0 and all Wi ∈ Gδn(W ), |eSng|Cα(Wi) 6
C|eSng|C0(Wi), where δ ∈ (0, δ0].

Proof. Let g be such a potential. Let c be such that g > c. Let Wi ∈ Gδn(W ). Then

Hα
Wi

(eSng) 6
n−1∑
k=0
|e−g◦Tk+Sng|C0(Wi)H

α
Wi

(g ◦ T k)

6 |eSng|C0(Wi)

n−1∑
k=0

e−cCΛ−αk|g|Cα(M)

6 |eSng|C0(Wi)C
1

1− Λα e
−c|g|Cα(M),

where for the second inequality we adapted the argument from [BD20, eq (6.2)], so that

g(T kx)− g(T ky)
dW (T kx, T ky)α

dW (T kx, T ky)α

dW (x, y)α 6 CHα
TkWi

(g)|JsT k|αC0(Wi) 6 CΛ−αk|g|Cα(M).

3.4 The Banach Spaces B and Bw and the Transfer Opera-
tors Lg

In Section 3.6, we construct the equilibrium state µg for T under the potential g out of left
and right eigenvectors, ν̃ and ν, of a transfer operator Lg associated with the billiard map
and the potential g, acting on suitable Banach spaces B and Bw of anisotropic distributions.
In this section, we define the Banach spaces B and Bw as well as the transfer operator Lg.

3.4.1 Motivation and heuristics

The spaces B and Bw are the same as in [BD20], but we recall their construction not only
for completeness, but also to introduce notations. The norms we introduce below are
defined by integrating along stable manifolds in Ws. We define precisely the notion of
distance dWs(·, ·) between such curves as well as a distance d(·, ·) defined among functions
supported on these curves.
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In the setup of uniform hyperbolic dynamic, the relevant transfer operator to study
equilibrium states associated to a potential g – see for example [Bal18] – can be defined on
measurable function f by

Lgf =
(
eg

f

JsT

)
◦ T−1

where JsT is the stable Jacobian of T . Ignoring first the low regularity of JsT , we see
from the hyperbolicity of T that the composition with T−1 should increase the regularity
of f in the unstable direction, while decreasing the regularity in the stable direction.
By integrating along stable manifold against the arclength measure, we hope to recover
some regularity along the stable manifold – notice that by a change of variable, JsT does
disappear. Morally, the weak norm | · |w and the strong stable norm || · ||s measure the
regularity of the averaged action of Lg. On the other hand, the strong unstable norm || · ||u
capture the regularity when passing from a stable manifold to another one. Here, this
regularity should be though as a log-scaled Hölder regularity.

3.4.2 Definition of the Banach spaces and embeddings into distribution

Recall that Ws denote the set of all nontrivial connected subsets W of stable manifolds for
T so that W has length at most δ0. Such curves have curvature bounded above by a fixed
constant [CM06, Prop. 4.29]. Thus T−1Ws =Ws, up to subdivision of curves. Obviously,
Ws ⊂ Ŵs. We define Wu similarly from unstable manifolds of T .

Given a curve W ∈ Ws, we denote by mW the unnormalized Lebesgue (arclength)
measure on W , so that |W | = mW (W ). Since the stable cone Cs (3.2.1) is bounded away
from the vertical, we may view each stable manifolds W ∈ Ws as the graph of a function
ϕW (r) of the arclength coordinate r ranging over some interval IW , that is

W = {GW (r) := (r, ϕW (r)) | r ∈ IW }.

Given two curves W1, W2 ∈ Ws, we may use this representation to define a “distance" 7

between them. Define

dWs(W1,W2) = |IW14 IW2 |+ |ϕW1 − ϕW2 |C1(IW1∩IW2 )

if IW1 ∩ IW2 6= ∅, and dWs(W1,W2) = +∞ otherwise.
Similarly, given two test functions ψ1 on W1, and ψ2 on W2, we define a distance

between them by

d(ψ1, ψ2) = |ψ1 ◦GW1 − ψ2 ◦GW2 |C0(IW1∩IW2 ) ,

whenever dWs(W1,W2) is finite, and d(ψ1, ψ2) = +∞ otherwise.
We can now introduce the norms used to define the spaces B and Bw. These norms will

depend on the constants ε0 > 0 and δ0 ∈ (0, 1), as well as on four positive real numbers α,
β, γ and ζ so that

0 < β < α 6 min{1/3, αg}, 1 < 2s0γ < eP∗(T,g)−sup g, 0 < ζ < γ

where g is a given, bounded (M1
0, αg)-Hölder potential such that P∗(T, g)− sup g > s0 log 2.

7. Actually, dWs is not a metric since it does not satisfies the triangle inequality. It is nonetheless
sufficient for our purpose to produce a usable notion of a distance between stable manifolds.
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Remark 3.4.1. The condition α 6 1/3 is needed for [BD20, Lemma 4.4], which is used to
prove the embedding into distributions. The number 1/3 comes from the regularity of the
density function of the conditional measures in the disintegration of µSRB against the stable
foliation. The bound α 6 αg will make possible to see g as an element of B. The upper
bound on γ arises from the use of the growth lemma 3.3.1. The dependence on δ0 comes
from the definition of Ws.

For f ∈ C1(M), define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W
f ψ dmW .

Similarly, define the strong stable norm of f by 8

‖f‖s = sup
W∈Ws

sup
ψ∈Cβ(W )

|ψ|
Cβ(W )≤| log |W ||γ

∫
W
f ψ dmW ,

(note that |f |w ≤ max{1, | log δ0|−γ}‖f‖s). Finally, for ς ∈ (0, γ), define the strong unstable
norm 9 of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈Cα(Wi)
|ψi|Cα(Wi)≤1
d(ψ1,ψ2)=0

| log ε|ς
∣∣∣∣∫
W1

f ψ1 dmW1 −
∫
W2

f ψ2 dmW2

∣∣∣∣ .

In order to use functional analysis results, we need to work with complete spaces. Since
C1(M) is not complete for the norms 10 | · |w and ‖ ·‖s+‖ ·‖u, we will use the corresponding
completed spaces.

Definition 3.4.2 (The Banach spaces). The space Bw is the completion of C1(M) with
respect to the weak norm | · |w, while B is the completion of C1(M) with respect to the
strong norm, ‖ · ‖B = ‖ · ‖s + ‖ · ‖u. Notice that since | · |w 6 ‖ · ‖B, there is a canonical
map B → Bw.

Since the main purpose of the spaces B and Bw is to contain left and right eigenvectors
of a transfer operator acting on those spaces, a crucial feature of B and Bw is that we can
see them as subspaces of the distributional space (C1(M))∗. Thanks to this property, we
will be able to construct a positive distribution by pairing the left and right eigenvectors,
and to extend it into the desired equilibrium measure. In order to state this result, we need
to introduce some other spaces, on which the transfer operator will be naturally defined
(and then extended to B and Bw).

Define the usual homogeneity strips

Hk :=
{

(r, ϕ) ∈Mi |
π

2 −
1
k2 6 ϕ 6

π

2 −
1

(k + 1)2

}
, k > k0 ,

8. The logarithmic modulus of continuity in ‖f‖s is used to obtain a finite spectral radius.
9. The logarithmic modulus of continuity appears in ‖f‖u because of the logarithmic modulus of

continuity in ‖f‖s. Its presence in ‖f‖u causes the loss of the spectral gap.
10. For example, the sequence

(
1
n

sin 2πn2 r
|Γi|

)
n
is a Cauchy sequence of C1(M) functions with respect

to | · |w, but diverges in the C1-norm.
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and analogously for k 6 −k0. Define Ws
H
⊂ Ws as the set of stable manifolds W ∈ Ws

such that TnW lies in a single homogeneity strip for all n > 0. We write ψ ∈ Cα(Ws
H

)
if ψ ∈ Cα(W ) for all W ∈ Ws

H
with uniformly bounded Hölder norm. The norm of

ψ in Cα(Ws
H

) is defined to be the sup over all the Cα(W ) norms, with W ranging in
Ws
H
. Similarly, define the space Cαcos(Ws

H
) containing the functions ψ such that ψ cosϕ ∈

Cα(Ws
H

). The norm of ψ in Cαcos(Ws
H

) is defined to be the norm of ψ cosϕ in Cα(Ws
H

).
Clearly, Cα(Ws

H
) ⊂ Cαcos(Ws

H
).

The canonical map Bw → (F)∗ (for F = C1(M), or F = Cα(Ws
H

)) is understood in
the following sense: for f ∈ Bw, there exists Cf <∞ such that letting fn ∈ C1(M) be a
sequence converging to f in the Bw norm, for every f ∈ F the following limit exists

f(ψ) := lim
n→+∞

∫
fnψ dµSRB

and satisfies |f(ψ)| 6 Cf ||ψ||F .
We summarize the properties of these Banach spaces obtained in [BD20] in the following

proposition.

Proposition 3.4.3. The spaces Bw and B are such that:
(i) The following canonical maps are all continuous

C1(M)→ B → Bw → (Cα(Ws
H))∗ → (C1(M))∗,

and the first two maps are injective. In particular, we also have the two injective and
continuous maps

(Bw)∗ → B∗ → (C1(M))∗.

(ii) The inclusion map B ↪→ Bw is compact.

Proof. The point (i) is the content of [BD20, Proposition 4.2]. We detail the proof of
the injectivity of the map B → Bw. To do so, we prove that the formula defining | · |w
(respectively || · ||s and || · ||u) can be extended when f ∈ Bw (respectively f ∈ B), and that
it coincides with the norm of f .

First, notice that when f ∈ C1(M), then for given W ∈ Ws and ψ ∈ Cα(W ) we have∫
W fψ dmW 6 |f |w|ψ|Cα(W ). Thus the map f 7→

∫
W fψ dmW can be extended uniquely

to Bw.
Now, let f ∈ Bw and ε > 0. Let fn be a Cauchy sequence of C1(M) functions converging

to f in Bw. Thus, there exists some nε such that for all n > nε, |f−fn|w 6 ε. Let W ∈ Ws

and ψ ∈ Cα(W ) with |ψ|Cα(W ) 6 1. By definition of |fn|w, for all n, there exist Wn and
ψn ∈ Cα(Wn) with |ψn|Cα(Wn) 6 1 such that∣∣∣∣∫

Wn

fnψn dmWn − |fn|w
∣∣∣∣ 6 ε.

Thus, we have∣∣∣∣∫
Wn

fψn dmWn −
∫
Wn

fnψn dmWn

∣∣∣∣ 6 |f − fn|w|ψn|Cα(Wn) 6 ε, ∀n > nε,

and so
∣∣∣|fn|w − ∫Wn

fψn dmWn

∣∣∣ 6 2ε. In particular, we get

sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )61

∫
W
f ψ dmW > |f |w.
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We now prove the reverse inequality. Using the same notations as above, there exist
V ∈ Ws and ϕ ∈ Cα(V ) with |ϕ|Cα(V ) 6 1 such that∣∣∣∣∣∣∣∣

∫
V
fϕdmV − sup

W∈Ws
sup

ψ∈Cα(W )
|ψ|Cα(W )61

∫
W
f ψ dmW

∣∣∣∣∣∣∣∣ 6 ε.

Now, since ∣∣∣∣∫
V
fnϕdmV −

∫
V
fϕdmV

∣∣∣∣ 6 |f − fn|w 6 ε, ∀n > nε,

we have that | supW∈Ws sup ψ∈Cα(W )
|ψ|Cα(W )61

∫
W f ψ dmW −

∫
V fnϕ dmV | 6 2ε for all large enough

n. In particular

sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )61

∫
W
f ψ dmW 6 |fn|w + 2ε.

Taking the limit in n, we get the claimed inequality.
The corresponding results for f ∈ B and norms || · ||s and || · ||u are obtained similarly,

noticing that for all f ∈ C1(M),∫
W
fψ dmW 6 ||f ||s|ψ|Cβ(W )| log |W ||−γ 6 ||f ||B|ψ|Cβ(W )| log |W ||−γ , ∀W ∈ Ws, ∀ψ ∈ Cβ(W )

Thus the integrals against Cβ(W ) functions in the definition of || · ||s makes sense even
when f ∈ B. On the other hand, since | · |w 6 || · ||B, the integrals in the definition of || · ||u
can be extended to f ∈ B as in the above case where f ∈ Bw.

We can now show the injectivity of the canonical map B → Bw. Let f ∈ B with
||f ||B 6= 0. If ||f ||s 6= 0, then the fact that |f |w 6= 0 follows from the definition of Cβ(W )
as the closure of C1(W ) in the Cβ norm, so that Cα(W ) is dense in Cβ(W ). Now, if
||f ||u 6= 0, then by definition of || · ||u, we can find some W ∈ Ws and ψ ∈ Cα(W ) so that∫
w fψ dmW > 0. Thus |f |w 6= 0.

The point (ii) is precisely the content of [BD20, Proposition 6.1].

3.4.3 The transfer operators

We may define the transfer operator Lg : (Cαcos(Ws
H))∗ → (Cα(Ws))∗, for a given weight

function g by
Lgf(ψ) = f

(
eg ψ◦TJsT

)
, ψ ∈ Cα(Ws) .

This operator is well defined because, if ψ ∈ Cα(Ws) then eg ψ ◦ T ∈ Cα(Ws). Fur-
thermore, since JsT and cosϕ are 1/3-log-Hölder on homogeneous stable manifolds, and
cosϕ/JsT is bounded away from 0 and +∞ also on homogeneous stable manifolds, we get
that 1/JsT ∈ Cαcos(Ws

H). Thus eg ψ◦TJsT ∈ C
α
cos(Ws

H).
When f ∈ C1(M), we identify f with the measure 11

fµSRB ∈ (Cαcos(Ws
H))∗ . (3.4.1)

11. To show the claimed inclusion just use that dµSRB = (2|∂Q|)−1 cosϕ drdϕ.
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The measure above is (abusively) still denoted by f . For f ∈ C1(M), we have

Lg(fµSRB)(ψ) =
∫
f eg

ψ ◦ T
JsT

dµSRB =
∫ (

eg
f

JsT

)
◦ T−1ψ dµSRB

=
((

eg
f

JsT

)
◦ T−1 µSRB

)
(ψ).

Thus, due to our identification (3.4.1) we have Lgf = (egf/JsT ) ◦ T−1, as claimed above.

Proposition 3.4.4. For any fixed (M1
0, αg)-Hölder potential g and corresponding spaces

B and Bw:

(i) If f ∈ C1(M), then Lg(fµSRB) ∈ B.

(ii) The operators Lg : (C1(M), | · |w)→ Bw and Lg : (C1(M), || · ||B)→ B are continuous.

In particular, Lg extends uniquely into operators on both Bw and B.

Since the proof of Proposition 3.4.4(i) is particularly long, we dedicate the next
subsection for its proof.

The proof of the second point (ii) follows from Proposition 3.5.1, in the case n = 1.

3.4.4 Proof of Proposition 3.4.4

The proof of point (i) of Proposition 3.4.4 is largely inspired from the proof of the analogous
result [BD22, Lemma 4.3] (corresponding to the geometric potentials g = −t log JuT ,
0 < t < t∗ for some t∗ > 1). In [BD22, Remark 4.11], Baladi and Demers explain how to
adapt their proof to the case g = 0 (replacing the estimates using homogeneity layers by
weaker ones, but not relying on homogeneity layers). Here, instead of adding a remark
on top of another one, we give in complete details the proof in the case of aM1

0-Hölder
potential g.

Proof. Let f ∈ C1(M). Since M is compact, for a large enough constant C, f + C > 0.
Now, by linearity, we have Lg(f) = Lg(f + C) − Lg(C). Thus, we only need to prove
Proposition 3.4.4 in the two cases f > 0 and f constant. The second case is a consequence
of the first one when f is a nonzero constant, whereas the case of f = 0 is immediate.
Therefore, without loss of generality, we now assume that f > 0.

As in [BD22, Section 4.4], we introduce a mollification in order to approximate Lg(f)
by C1(M) functions in the norm || · ||B: Let ρ : R2 → R be a nonnegative, rotationally
symmetric C∞ function, supported in the unit disk and such that

∫
R2 ρ(z) dz = 1 and

|ρ|C1 6 2. For η > 0 define

fη(x) :=
∫
Bη(x)

η−2ρ

(
d(x, z)
η

)
Lg(f)(z) dz,

where Bη(x) is the ball of radius η centred at x. Viewing the connected components of M
as subsets of R2 (up to some quotient), we set Lg(f) ≡ 0 outside M so that the integral is
well defined even when Bη(x) 6⊂M . Since it will be convenient to have estimates depending
on η of the C0 and C1 norms of fη, we start with those estimates.

Estimations of |fη|C0(M) and |fη|C1(M). Let x ∈M and η > 0 be such that Bη(x)∩TS0 6= ∅.
Note that, because of the continuity of the flow, there can be at most τmax/τmin+1 connected
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components in Bη(x)rTS0. Using the uniform transversality of TS0 with the stable cones,
and the fact that there is a constant C such that for all k > k0, k2|JsT | ∈ [C−1, C] on
THk, we get that THk is at distance approximately k−4 from Bη(x) ∩ TS0. In particular,
there is a constant C ′ such that if Bη(x) ∩ THk 6= ∅, then k 6 C ′η−1/4. Similarly, from
the estimate on the stable Jacobian, we get that diams(Bη(x) ∩ THk) 6 Ck−5. On the
other hand, we easily get the bound diamu(Bη(x) ∩ THk) 6 Cη. Putting together these
estimates, we obtain

|fη(x)| 6 C
∑

k>C′η−1/4

∫
Bη(x)∩THk

η−2Lg(f)(z) dz 6 C
∑

k>C′η−1/4

(η−2|eg|∞|f |∞k2)(Cη Ck−5)

6 Cη−1esup g|f |∞
∑

k>C′η−1/4

k−3 6 Cη−1/2esup g|f |∞.

We conclude that

|fη|C0(M) 6 Cesup g|f |C0(M)η
−1/2, and similarly, |fη|C1(M) 6 Cesup g|f |C0(M)η

−3/2.

(3.4.2)

Estimation of ||Lg(f) − fη||s. Fix η > 0 and let W ∈ Ws and ψ ∈ Cβ(W ) be such that
|ψ|Cβ(W ) 6 | log |W ||γ . Since the stable and unstable cone fields are uniformly transverse,
there is a constant C1 > 0 such that for any W ′ ∈ Ws and x′ ∈W ′, if ds(x′, ∂W ′) 6 C1η

then Bη(x′) ⊂M . We distinguish two cases. Consider first the case |W | 6 2C1η. then∫
W

(Lg(f)− fη)ψ dmW 6 Cesup g|f |∞| log |W ||γ(|T−1W |+ |W |η−1/2)

6 Cesup g|f |∞| log |W ||γ(C|W |1/2 + |W |1/2) 6 Cesup g|f |∞| log η|γη1/2,
(3.4.3)

where for the second inequality we used that |T−1W | 6 C|W |, and for the third inequality
that t 7→ t1/2| log t|γ is increasing near t = 0.

Assume now that |W | > 2C1η. Define W−η to be W minus the two subcurves of length
2C1η of W starting at each endpoint of W . Then, since mW (W rW−η ) 6 4C1η, we can
estimate as in the above case∫

WrW−η
(Lg(f)− fη)ψ dmW 6 Cesup g|f |∞η1/2| log η|γ . (3.4.4)

Since W intersects at most N = τmax
τmin

+ 1 elements of TS0, the set W ∩ (∪k>η−1/5THk) is
made of at most N connected curves each of length at most Cη4/5. Estimating as above,∫

W∩(∪
k>η−1/5THk)

(Lg(f)− fη)ψ dmW 6 Cesup g|f |∞η3/10| log η|γ . (3.4.5)

It remains to estimate to integral of (Lg(f)− fη)ψ on the parts of W−η that intersect
THk, for k < η−1/5. To do so, we give an estimate of Lg(f) − fη on those curves. Let
x ∈W−η ∩ THk̄, for some k̄ < η−1/5. Because of the uniform transversality between TS0
and the stable cones, for small enough η fixed, not only Bη(x) does not intersect TS0, but
Bη(x) lies in a bounded number of homogeneity strips. Note also that since x ∈W−η , by
definition of C1, we have that Bη(x) ⊂M).

Using [BD22, Lemma 4.9], one can find a constant C > 0 such that for all η > 0 and all
W ∈ Ws, there existsWu(η) ⊂W such that for all x′ ∈Wu(η), x′ cuts the unstable manifold
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passing through it into two curves of length at least η, and 12 mW (W rWu(η)) 6 C
√
η.

Denote Sη = W rWu(η) and let Aη(x) ⊂ Bη(x) be the subset of Bη(x) foliated by unstable
manifolds of length at least 2η. Finally, denote Eη(x) = Bη(x) rAη(x). By construction,
we have the following decomposition

Lg(f)(x)− fη(x) =
∫
Bη(x)

η−2ρ

(
d(x, z)
η

)
(Lg(f)(x)− Lg(f)(z)) dz

=
∫
Aη(x)

η−2ρ

(
d(x, z)
η

)
(Lg(f)(x)− Lg(f)(z)) dz

+
∫
Eη(x)

η−2ρ

(
d(x, z)
η

)
(Lg(f)(x)− Lg(f)(z)) dz .

(3.4.6)

We start by estimating the integral on Eη(x). From the assumptions on x and k̄,
Bη(x) intersects only finitely many THk and x /∈ ∪k>η−1/5THk. Recall that, from the
construction of homogeneity strips, we obtain the existence of a constant C > 0 such that
for all z ∈ Bη(x) we have

C−1 6
JsT (T−1x)
JsT (T−1z) 6 C.

Furthermore, since f is positive and bounded, there is a constant C such that for all
z ∈ Bη(x) we have |f(T−1z)| 6 C|f(T−1x)|. Combining these last two estimates with the
fact that g is bounded, we get for all z ∈ Bη(x),

Lg(f)(z) = Lg(f)(x)J
sT (T−1x)
JsT (T−1z)

eg(T
−1z)

eg(T−1x)
f(T−1z)
f(T−1x) 6 CLg(f)(x) . (3.4.7)

As a consequence, we can estimate the integral over Eη(x) as follows∫
Eη(x)

η−2ρ

(
d(x, z)
η

)
(Lg(f)(x)− Lg(f)(z)) dz 6 Cη−2Lg(f)(x)

∫
Eη(x)

dz

6 Cη−1|Sη ∩Bη(x)|Lg(f)(x) .

We now turn to the second term in the right hand side of (3.4.6). To do this, we split
Aη(x) into two subsets. For each point y ∈W−η ∩Aη(x) there exists an unstable manifold
Uy of length at least 2η. Applying [BD22, Lemma 4.10] (with % = η5/4 in their notations),
there exists a subset U ′y ⊂ Uy such that mUy(Uy r U ′y) 6 Cη5/4 and∣∣∣∣ JsT (z)

JsT (z′) − 1
∣∣∣∣ 6 Cs

(
η−5/6d(z, z′) + d(z, z′)1/3

)
, ∀z, z′ ∈ U ′y ,

where the constants C and Cs are independent of Uy and η. Define A′η(x) ⊂ Aη(x) to be
those points contained in sets U ′y. It follows from the properties of the sets U ′y and the
absolute continuity of the unstable foliation that∫

Aη(x)rA′η(x)
η−2ρ

(
d(x, z)
η

)
(Lg(f)(x)− Lg(f)(z)) dz 6 CLg(f)(x)η1/4 (3.4.8)

where we again have used the bound Lg(f)(z) 6 Lg(f)(x) on Bη(x).

12. Actually, the √η can be improved into η4/5, but this weaker bound suffices.
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On A′η(x), we estimate the difference Lg(f)(x)−Lg(f)(z) as follows. Given z ∈ A′η(x),
let y ∈W−η ∩Aη(x) be the point such that z ∈ U ′y, that is, the point of intersection of the
stable manifold of x with the unstable manifold of z. Therefore,

|Lg(f)(x)− Lg(f)(z)| 6 |Lg(f)(x)− Lg(f)(y)|+ |Lg(f)(y)− Lg(f)(z)|

6

∣∣∣∣∣ eg(T
−1x)

JsT (T−1x)

∣∣∣∣∣
∣∣∣∣∣f(T−1x)− f(T−1y) +

(
1− eg(T

−1y)

eg(T−1x)
JsT (T−1x)
JsT (T−1y)

)
f(T−1y)

∣∣∣∣∣
+
∣∣∣∣∣ eg(T

−1y)

JsT (T−1y)

∣∣∣∣∣
∣∣∣∣∣f(T−1y)− f(T−1z) +

(
1− eg(T

−1z)

eg(T−1y)
JsT (T−1y)
JsT (T−1z)

)
f(T−1z)

∣∣∣∣∣
6 Lg(1)(x)

(
|f |C1(M)d(T−1x, T−1y) + |f |∞

(∣∣∣∣∣1− JsT (T−1x)
JsT (T−1y)

∣∣∣∣∣+
∣∣∣∣∣1− eg(T

−1y)

eg(T−1x)

∣∣∣∣∣
))

+ CLg(1)(x)
(
|f |C1(M)d(T−1y, T−1z) + |f |∞

(∣∣∣∣∣1− JsT (T−1y)
JsT (T−1z)

∣∣∣∣∣+
∣∣∣∣∣1− eg(T

−1z)

eg(T−1y)

∣∣∣∣∣
))

6 CLg(1)(x)
[
|f |C1(M)d(T−1x, T−1y) + C|f |∞

(
d(T−1x, T−1y)1/3 + |g|Cαd(T−1x, T−1y)α

)
+ |f |∞

(
Cs
(
η−5/6d(T−1y, T−1z) + d(T−1y, T−1z)1/3

)
+ |g|Cαd(T−1y, T−1z)α

)
+ |f |C1(M)d(T−1y, T−1z)

]
.

Now, since y and z are on the same unstable manifold, we get that d(T−1y, T−1z) 6
Cd(y, z) 6 Cη. On the other hand, because of the assumption on x and k̄, the subcurve of
W joining x to y is not cut by TS0, we can thus use the estimate on the stable Jacobian of
T to get

d(T−1x, T−1y) 6 Ck̄2d(x, y) 6 Cη3/5,

since k̄ < η−1/5. Putting these estimates together and keeping only the leading term in η,
we obtain,

|Lg(f)(x)− Lg(f)(z)| 6 C|f |C1(M)|g|CαLg(1)(x) ηα/6 , ∀z ∈ A′η(x) . (3.4.9)

Finally, integrating (3.4.9) on A′η(x), and recalling the decomposition (3.4.6), we get that

|Lg(f)(x)− fη(x)| 6 Lg(1)(x)
(
C|f |∞η1/4 + C|f |∞η−1|Sη ∩Bη(x)|+ C|f |C1(M)|g|Cαηα/6

)
6 CLg(1)(x)

(
|f |∞η−1|Sη ∩Bη(x)|+ |f |C1(M)|g|Cαηα/6

)
.

(3.4.10)

We still need to integrate (3.4.10) against ψ on W−η ∩ (∪k6η−1/5THk). We start with the
second term on the right hand side of (3.4.10).∫
W−η ∩(∪

k6η−1/5THk)
C|f |C1(M)|g|Cαηα/6Lg(1)ψ dmW 6 C|f |C1(M)|g|Cαηα/6|ψ|C0(W )C

√
|W |

6 C|f |C1(M)|g|Cαηα/6|W |1/2| log |W ||γ 6 C|f |C1(M)|g|Cαηα/6.
(3.4.11)

Now for the first term in (3.4.10). Let Iη(x) = Bη(x) ∩W , and use the parametrization
W = GW (x, IW,x) = {(r, ϕW (x, r)) | r ∈ IW,x} such that GW (x, 0) = x. Thus

|Sη ∩Bη(x)| =
∫
Iη(x)

1Sη(z) dmW (z)

=
∫ 2η

−2η
1Sη(GW (x, r))JGW (x, r) dr.



3.4. The Banach Spaces B and Bw and the Transfer Operators Lg 77

Hence,∫
W−η ∩(∪

k6η−1/5THk)
C|f |∞Lg(1)(x)ψ(x)

η
|Sη ∩Bη(x)|dmW (x)

= C|f |∞
∫
W−η ∩(∪

k6η−1/5THk)
Lg(1)(x)ψ(x)

η

∫ 2η

−2η
1Sη(GW (x, r))JGW (x, r) drdmW (x)

6 C|f |∞
| log |W ||γ

η

∫ 2η

−2η

∫
W−η

Lg(1)(x)1Sη(GW (x, r))JGW (x, r) dmW (x)dr

6 C|f |∞esup g | log |W ||γ

η

∫ 2η

−2η
|Sη|1/2 dr 6 4C|f |∞esup gη1/2| log η|γ

where we used that translations of W−η up to length C1η (here 2η, but we can assume
that C1 > 2) are subsets of W , and then that |T−1Sη| 6 C|Sη|1/2. Putting together this
estimate with (3.4.11), we obtain∫

W−η ∩(∪
k6η−1/5THk)

(Lg(f)− fη)ψ dmW 6 C|f |C1(M)(|g|Cα + esup g)ηα/6 .

Combining this last estimate with (3.4.4) and (3.4.5) as well as with (3.4.3), we get that
for any W ∈ Ws, |ψ|Cβ(W ) < 1 and any η > 0,∫

W
(Lg(f)− fη)ψ dmW 6 C|f |C1(|g|Cα + esup g)ηα/6. (3.4.12)

Taking the appropriate supremum over ψ, we get that ||Lg(f) − fη||s 6 C|f |C1(|g|Cα +
esup g)ηα/6, which converges to 0 as η goes to zero.

Estimation of ||Lg(f)− fη||u. Let 0 < ε < ε0, and W1, W2 ∈ Ws with dWs(W1,W2) 6 ε.
Let ψi ∈ Cα(Wi) with |ψi|Cα(Wi) 6 1, and d(ψ1, ψ2) = 0. We want to estimate

| log ε|ζ
∣∣∣∣∫
W1

(Lg(f)− fη)ψ1 dmW1 −
∫
W2

(Lg(f)− fη)ψ2 dmW2

∣∣∣∣.
We distinguish two cases. First, assume that ηα/6 < | log ε|−2ζ . Then, applying twice
(3.4.12), we obtain

| log ε|ζ
∣∣∣ ∫
W1

(Lg(f)− fη)ψ1 dmW1 −
∫
W2

(Lg(f)− fη)ψ2 dmW2

∣∣∣
6 Cη−α/12ηα/6(|g|Cα + esup g)|f |C1(M) 6 Cηα/12(|g|Cα + esup g)|f |C1(M) .

(3.4.13)

Assume now that ηα/6 > | log ε|−2ζ . We decompose the difference of integrals as follows∫
W1

(Lg(f)− fη)ψ1 dmW1 −
∫
W2

(Lg(f)− fη)ψ2 dmW2

=
(∫

W1
Lg(f)ψ1 dmW1 −

∫
W2
Lg(f)ψ2 dmW2

)
+
(∫

W2
fηψ2 dmW2 −

∫
W1

fηψ1 dmW1

)
.

(3.4.14)

We estimate the two differences of (3.4.14) separately. We start with the difference
involving fη. Using the notations from the definition of dWs , we see the curves W`, ` = 1, 2,
as the graph of the functions r ∈ I` 7→ ϕW`

(r). Since the at most two curves V `
i ⊂ W`
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corresponding to intervals I14 I2 have length at most Cε by definition of dWs(W1,W2) 6 ε,
we obtain ∫

V `i

fηψ` dmW`
6 Cε|fη|C0(M) (3.4.15)

On the other hand, for the integrals over the curves U` ⊂ W` corresponding to I1 ∩ I2,
we first notice that |I1 ∩ I2| is uniformly bounded. Thus, doing a change of variable with
GU`(r) = (r, ϕU`(r)), we obtain∫

U1
fηψ1 dmW1 −

∫
U2
fηψ2 dmW2 6 C|(fηψ1) ◦GU1 JGU1 − (fηψ2) ◦GU2 JGU2 |C0(I1∩I2)

(3.4.16)

Now, using the definition of dWs(W1,W2) 6 ε, we get that |JGU1 − JGU2 |C0(I1∩I2) 6 ε

as well as d(GU1(r), GU2(r)) 6 ε for all r ∈ I1 ∩ I2. Also, since ψ1 ◦GU1 = ψ2 ◦GU2 , we
can write

|(fηψ1) ◦GU1 JGU1 − (fηψ2) ◦GU2 JGU2 |
= |((fηψ1) ◦GU1)(JGU1 − JGU2) + (ψ2 ◦GU2 JGU2)(fη ◦GU1 − fη ◦GU2)|
6 Cε|fη|C0(M) + Cε|fη|C1(M) 6 Cε|fη|C1(M)

Combining this estimate with (3.4.16), (3.4.15) and (3.4.2), we obtain

| log ε|ζ
∣∣∣ ∫
W2

fηψ2 dmW2 −
∫
W2

fηψ2 dmW2

∣∣∣ 6 Cε|fη|C1(M)| log ε|ζ

6 Cesup g|f |C0(M)η
−3/2η−α/12 exp(−η−

α
12ζ ).

(3.4.17)

We now pass to the estimate of the difference involving Lg(f) in (3.4.14), still assuming
that ηα/6 > | log ε|−2ζ . We perform the same decomposition of T−1W` into matched curves
U `j and unmatched curves V `

i as in the proof of Proposition 3.5.1, but for n = 1. Then,
decomposing the difference of integrals∣∣∣ ∫
W1
Lg(f)ψ1 dmW1 −

∫
W2
Lg(f)ψ2 dmW2

∣∣∣ 6∑
`,i

∣∣∣ ∫
V `i

fψ` ◦ Teg dmW`

∣∣∣
+
∑
j

∣∣∣ ∫
U1
j

fψ1 ◦ Teg dm−
∫
U2
j

fψ2 ◦ Teg dm
∣∣∣.

We first estimate the part involving the unmatched pieces V `
i . We only need to control the

sum over i of |V `
i |. Since, by construction, we have |TV `

i | 6 Cε, we thus have |V `
i | 6 Cε1/2.

Now, since there is at most two curves V `
i in each element of Gδ01 (W`), we use Lemma 3.3.1(b)

with γ = 0 to obtain that∑
`,i

∣∣∣ ∫
V `i

fψ` ◦ Teg dmW`

∣∣∣ 6 |f |∞esup g∑
`,i

|V `
i | 6 C|f |∞esup g#M1

0 ε
1/2

In order to bound the sum involving the matched curves U `j , we decompose each
difference of integrals introducing φj := (egψ1 ◦ T ) ◦GU1

j
◦G−1

U2
j
,∫

U1
j

fψ1 ◦ Teg dm−
∫
U2
j

fψ2 ◦ Teg dm =
∫
U1
j

fψ1 ◦ Teg dm−
∫
U2
j

fφj dm

+
∫
U2
j

f(φj − ψ2 ◦ T eg) dm.
(3.4.18)
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Using the computations from the proof of Proposition 3.5.1 in the case n = 1, the last
term can be estimated as follows∑

j

∣∣∣ ∫
U2
j

f(φj − ψ2 ◦ T eg) dm
∣∣∣ 6 Cεα−β||f ||s| log δ0|

∑
A∈Mn

0

|eg|C0(A).

For difference in (3.4.18), we use a change of variable in order to integrate on IU1
j

= IU2
j
.

∫
U1
j

fψ1 ◦ Teg dm−
∫
U2
j

fφj dm =
∫
I
U1
j

(ψ1 ◦ Teg) ◦GU1
j
(f ◦GU1

j
JGU1

j
− f ◦GU2

j
JGU2

j
) dr

We now give an upper bound on the function inside the integral. Obviously, (ψ1 ◦ Teg) ◦
GU1

j
6 esup g. On the other hand, from [DZ11, Lemma 4.2], there exists C > 0 independent

ofW1 andW2 such that, for all j, dWs(U1
j , U

2
j ) 6 Cε. In particular, |JGU1

j
−JGU2

j
|C0(I

U1
j

) 6

Cε and d(GU1
j
(r), GU2

j
(r)) 6 Cε for all r ∈ IU1

j
. Thus

|f ◦GU1
j
JGU1

j
− f ◦GU2

j
JGU2

j
|(r) 6 C|f |C1(M)ε,

where we used that |JGU`j | 6 C for some constant C uniform on Ws. Now, since there is
at most one matched piece U `j per element of Gδ01 (W`), we use Lemma 3.3.1(b) with γ = 0
in order to sum over j. Therefore∑

j

∣∣∣ ∫
U1
j

fψ1 ◦ Teg dm−
∫
U2
j

fφj dm
∣∣∣ 6 Cesup g|f |C1(M)ε#M1

0.

Combining the estimates on matched and unmatched pieces, we finally obtain∣∣∣ ∫
W1
Lg(f)ψ1 dmW1 −

∫
W2
Lg(f)ψ2 dmW2

∣∣∣ 6 Cεmin(α−β,1/2)|f |C1(M)e
sup g#M1

0 (3.4.19)

Combining (3.4.17) with (3.4.19) inside (3.4.14), we get

| log ε|ζ
∣∣∣ ∫
W1

(Lg(f)− fη)ψ1 dmW1 −
∫
W2

(Lg(f)− fη)ψ2 dmW2

∣∣∣
6 Cesup g|f |C1(M)η

−3/2−α/12 exp(−min(α− β, 1/2)η−α/12ζ)
(3.4.20)

Finally, from (3.4.13) and (3.4.20), and taking the appropriate supremums, on get an
upperbound on ||fη −Lg(f)||u that converges to 0 as η goes to zero. Thus, we have shown
that

||fη − Lg(f)||B = ||fη − Lg(f)||s + ||fη − Lg(f)||u −−−→
η→0

0.

3.5 Norm Estimates and Spectral Radius

The purpose of this section is to state and prove sharp upper and lower bounds on the
norm of the iterated operator Lng , both in Bw and B.
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Proposition 3.5.1. Let g be a (M1
0, αg)-Hölder continuous potential. Assume that

P∗(T, g)− sup g > s0 log 2 and that SSP.1 holds. Then there exist δ0 and C > 0 such that
for all f ∈ B,

|Lng f |w 6
C

δ0
enP∗(T,g)|f |w , ∀n ≥ 0 ; (3.5.1)

‖Lng f‖s 6
C

δ0
enP∗(T,g)‖f‖s , ∀n ≥ 0 ; (3.5.2)

‖Lng f‖u 6
C

δ0
(‖f‖u + ‖f‖s)enP∗(T,g) , ∀n ≥ 0 . (3.5.3)

It follows that the spectral radius of Lg on B and Bw is at most eP∗(T,g).

Remark 3.5.2. It is possible to obtain similar estimates without the assumption SSP.1,
however an additional factor enε appears on the right hand sides, for any arbitrary ε > 0.
We indicate places in the proof where it happens and how to correct for. The conclusion
about the upper bound of the spectral radius still holds. Nonetheless, in order to construct
nontrivial maximal eigenvectors, we will need the estimates from Proposition 3.5.1.

Theorem 3.5.3. Let g be a (M1
0, αg)-Hölder continuous potential. Assume that P∗(T, g)−

sup g > s0 log 2 and that SSP.1 holds. Then there exists C such that

||Lng1||s > |Lng1|w > C
δ1
2 e

nP∗(T,g).

Proof of Proposition 3.5.1. Let δ0 be the scale associated to g as in the beginning of
Section 3.3.2. The set Ws is defined with respect to the scale δ0.

We start with the weak norm estimate (3.5.1). Let f ∈ C1(M), W ∈ Ws and
ψ ∈ Cα(W ) be such that |ψ|Cα(W ) 6 1. For n > 0 we use the definition of the weak norm
on each Wi ∈ Gδ0n (W ) to estimate∫
W
Lng fψ dmW =

∑
Wi∈G

δ0
n (W )

∫
Wi

feSngψ◦TndmWi 6 |f |w
∑

Wi∈G
δ0
n (W )

|eSng|Cα(Wi)|ψ◦T
n|Cα(Wi).

Clearly, sup |ψ ◦ Tn|Wi 6 supW |ψ|. For x, y ∈Wi, we have,

|ψ(Tnx)− ψ(Tny)|
dW (Tnx, Tny)α · dW (Tnx, Tny)α

dW (x, y)α 6 C|ψ|Cα(W )|JsTn|αC0(Wi) (3.5.4)

6 CΛ−αn|ψ|Cα(W ) ,

so thatHα
Wi

(ψ◦Tn) 6 CΛ−αnHα
W (ψ) and thus |ψ◦Tn|Cα(Wi) 6 C|ψ|Cα(W ). By Lemma 3.3.12,

we get∫
W
Lng fψ dmW 6 C|f |w|ψ|Cα(W )

∑
Wi∈G

δ0
n (W )

|eSng|C0(Wi) 6
2C
δ0
|f |w|ψ|Cα(W )

∑
A∈Mn

0

|eSng|C0(A),

6
2C
c1δ0
|f |w|ψ|Cα(W )e

nP∗(T,g),

where the second inequality uses that there are no more than 2δ−1
0 curves Wi of Gδ0n (W )

per element of Mn
0 , and the third inequality uses the Exact Exponential Growth from

Proposition 3.3.10 13.
13. without the assumptions SSP.1 and SSP.3, Proposition 3.3.10 might not hold. Still, for ε > 0 and all

n > 1,
∑

A∈Mn
0

|eSng|C0(A) 6 Cε e
n(P∗(T,g)+ε) because of the subadditivity from Theorem 3.2.1.



3.5. Norm Estimates and Spectral Radius 81

Now we prove the strong stable norm estimate (3.5.2). We can choose m so large
that 2s0γ(Km + 1)1/m < eP∗(T,g)−sup g. Let W ∈ Ws, ψ ∈ Cβ(W ) such that |ψ|Cβ(W ) 6
| log |W ||γ . Then, by definition of the strong norm∫

W
Lng fψdmW =

∑
Wi∈G

δ0
n (W )

∫
Wi

fψ ◦ TneSngdmWi

6
∑

Wi∈G
δ0
n (W )

||f ||s|ψ ◦ Tn|Cβ(Wi)|e
Sng|Cβ(Wi)| log |Wi||−γ

6 C||f ||s
∑

Wi∈G
δ0
n (W )

( log |W |
log |Wi|

)γ
|eSng|Cβ(Wi)

6 C||f ||s22γ+1δ−1
0

n∑
j=1

2js0γ(Km+ 1)j/mej sup g ∑
A∈Mn−j

0

|eSn−jg|C0(A)

where for the last line we used Lemma 3.3.1(b) and Lemma 3.3.12. Let

Dn := C22γ+1δ−1
0

n∑
j=1

2js0γ(Km+ 1)j/mej sup g ∑
A∈Mn−j

0

|eSn−jg|C0(A).

From Proposition 3.3.10, for all n > 1,
∑

A∈Mn
0

|eSng|C0(A) 6
2
c1
enP∗(T,g). Let ε1 = P∗(T, g)−

sup g − log(2s0γ(Km+ 1)1/m). Thus 14,

Dn 6 22γ+1 C

c1δ0

n∑
j=1

e(P∗(T,g)−ε1)je(n−j)P∗(T,g) 6 22γ+1 1
1− e−ε1

C

c1δ0
enP∗(T,g).

This concludes the proof of (3.5.2).

Finally, we now prove the strong unstable norm estimate (3.5.3). Fix ε̃ < ε0, and
consider two curves W 1, W 2 ∈ Ws with dWs(W 1,W 2) < ε̃.

For n > 1, we describe how to partition T−nW ` into “matched” pieces U `j and “un-
matched” pieces V `

i , ` = 1, 2.
Let ω be a connected component of W 1 \ S−n. To each point x ∈ T−nω, we associate a

vertical line segment γx of length at most CΛ−nε̃ such that its image Tnγx, if not cut by a
singularity, will have length Cε̃. By [CM06, §4.4], all the tangent vectors to T iγx lie in
the unstable cone Cu(T ix) for each i > 1 so that they remain uniformly transverse to the
stable cone and enjoy the minimum expansion given by Λ.

Doing this for each connected component of W 1 \ S−n, we subdivide W 1 \ S−n into
a countable collection of subintervals of points for which Tnγx intersects W 2 \ S−n and
subintervals for which this is not the case. This in turn induces a corresponding partition
on W 2 \ S−n.

We denote by V `
i the pieces in T−nW ` which are not matched up by this process and

note that the images TnV `
i occur either at the endpoints of W ` or because the vertical

segment γx has been cut by a singularity. In both cases, the length of the curves TnV `
i can

be at most Cε̃ due to the uniform transversality of S−n with the stable cone and of Cs(x)
with Cu(x).

14. Here, again, conclusion from Proposition 3.3.10 can be replaced.
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In the remaining pieces the foliation {Tnγx}x∈T−nW 1 provides a one-to-one correspon-
dence between points in W 1 and W 2. We further subdivide these pieces in such a way that
the lengths of their images under T−i are less than δ0 for each 0 6 i 6 n and the pieces are
pairwise matched by the foliation {γx}. We call these matched pieces U `j . Since the stable
cone is bounded away from the vertical direction, we can adjust the elements of Gδ0n (W `)
created by artificial subdivisions due to length so that U `j ⊂ W `

i and V `
k ⊂ W `

i′ for some
W `
i ,W

`
i′ ∈ Gδ0n (W `) for all j, k > 1 and ` = 1, 2, without changing the bounds on sums over

Gδ0n (W `). There is at most one U `j and two V `
j per W `

i ∈ Gδ0n (W `).
In this way we write W ` = (∪jTnU `j ) ∪ (∪iTnV `

i ). Note that the images TnV `
i of the

unmatched pieces must be short while the images of the matched pieces U `j may be long or
short.

We have arranged a pairing of the pieces U `j = GU`j
(Ij), ` = 1, 2, with the property:

If U1
j = {(r, ϕU1

j
(r)) | r ∈ Ij} then U2

j = {(r, ϕU2
j
(r)) | r ∈ Ij} , (3.5.5)

so that the point x = (r, ϕU1
j
(r)) is associated with the point x̄ = (r, ϕU2

j
(r)) by the vertical

segment γx ⊂ {(r, s)}s∈[−π/2,π/2], for each r ∈ Ij .
Given ψ` on W ` with |ψ`|Cα(W `) 6 1 and d(ψ1, ψ2) 6 ε̃, we must estimate

∣∣∣∣∫
W 1
Lng fψ1dmW1 −

∫
W 2
Lng fψ2dmW2

∣∣∣∣ 6∑
l,i

∣∣∣∣∣
∫
V li

fψl ◦ TneSngdm
∣∣∣∣∣

+
∑
j

∣∣∣∣∣
∫
U1
j

fψ1 ◦ TneSngdm−
∫
U2
j

fψ2 ◦ TneSngdm
∣∣∣∣∣.

(3.5.6)

We first estimate the differences of matched pieces U lj . The function φj = (ψ1 ◦ TneSng) ◦
GU1

j
◦G−1

U2
j
is well defined on U2

j , and we can estimate each difference by

∣∣∣∣∣
∫
U1
j

fψ1 ◦ TneSngdm−
∫
U2
j

fψ2 ◦ TneSngdm
∣∣∣∣∣ 6

∣∣∣∣∣
∫
U1
j

fψ1 ◦ TneSngdm−
∫
U2
j

fφjdm
∣∣∣∣∣

+
∣∣∣∣∣
∫
U2
j

f(φj − ψ2 ◦ TneSng)dm
∣∣∣∣∣.

(3.5.7)

We bound the first term in equation (3.5.7) using the strong unstable norm. We have
that |GU1

j
◦ G−1

U2
j
|C1 6 Cg, for some Cg > 0 due to the fact that each curve U lj has

uniformly bounded curvature and slopes bounded away from infinity. Thus |φj |Cα(U2
j ) 6

CCg|ψ1|Cα(W 1)|eSng|Cα(W 1). Moreover, d(ψ1◦TneSng, φj) = |ψ1◦TneSng◦GU1
j
−φj◦GU2

j
| =

0 by definition of φj . To complete the bound on the first term, we need the following
estimate from [DZ11, Lemma 4.2]: There exists C > 0, independent of W 1 and W 2, such
that

dWs(U1
j , U

2
j ) 6 CΛ−nnε̃ =: ε1, ∀j. (3.5.8)
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Then we apply the definition of the strong unstable norm with ε1 instead of ε̃. Thus,

∑
j

∣∣∣∣∣
∫
U1
j

fψ1 ◦ TneSngdm−
∫
U2
j

fφjdm
∣∣∣∣∣ 6 2δ−1

0 CC2
g | log ε1|−ζ ||f ||u

∑
A∈Mn

0

|eSng|C0(A),

(3.5.9)

where we used Lemmas 3.3.12 and 3.3.1(b) with γ = 0 since there is at most one matched
piece U1

j corresponding to each component W 1
i ∈ Gδ0n (W 1) of T−nW 1.

It remains to estimate the second term using the strong stable norm.∣∣∣∣∣
∫
U2
j

f(φj − ψ2 ◦ TneSng)dm
∣∣∣∣∣ 6 ||f ||s| log |U2

j ||−γ |φj − ψ2 ◦ TneSng|Cβ(U2
j ).

In order to estimate this last Cβ-norm, we use that |GU2
j
|C1 6 C and |G−1

U2
j
|C1 6 C.

|φj − ψ2 ◦ TneSng|Cβ(U2
j ) 6 C|(ψ1 ◦ TneSng) ◦GU1

j
− (ψ2 ◦ TneSng) ◦GU2

j
|Cβ(Ij)

6 C|(ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
)(eSng ◦GU1

j
)

+ (ψ2 ◦ Tn ◦GU2
j
)(eSng ◦GU1

j
− eSng ◦GU2

j
)|Cβ(Ij)

6 C|(ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
)|Cβ(Ij) |e

Sng|C0(U1
j )

+ C|ψ2|C0(U2
j ) |eSng ◦GU1

j
− eSng ◦GU2

j
|Cβ(Ij).

(3.5.10)

It follows from [DZ11, Lemma 4.4] that

|ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cβ(Ij) 6 Cε̃α−β.

Now, we need to estimate |eSng◦GU1
j
−eSng◦GU2

j
|Cβ(Ij). Since d(T i(GU1

j
(r)), T i(GU2

j
(r))) 6

CΛ−(n−i)ε̃ for all r ∈ Ij and 0 6 i 6 n, we get

|eSng ◦GU1
j
(r)− eSng ◦GU2

j
(r)| = e

Sng(GU1
j

(r))
|1− e

Sng(GU2
j

(r))−Sng(GU1
j

(r))
|

6 2|eSng|C0(U1
j )|Sng(GU2

j
(r))− Sng(GU1

j
(r))|

6 2C Λαg
Λαg − 1 |g|C

αg (Cε̃)αg |eSng|C0(U1
j )

(3.5.11)

We estimate the β-Hölder constant in two ways. First, using (3.5.11) twice, we have for all
r, s ∈ Ij that

|eSng ◦GU1
j
(r)− eSng ◦GU2

j
(r)− eSng ◦GU1

j
(s) + eSng ◦GU2

j
(s)| 6 Cε̃αg |eSng|C0(U1

j ).

On the other hand, using that GU`j (r) and GU`j (s) lie on the same stable curve,

|eSng ◦GU1
j
(r)− eSng ◦GU2

j
(r)− eSng ◦GU1

j
(s) + eSng ◦GU2

j
(s)|

6 |eSng ◦GU1
j
(r)− eSng ◦GU1

j
(s) + eSng ◦GU2

j
(s)− eSng ◦GU2

j
(r)|

6 |eSng|Cαg (U1
j )d(GU1

j
(r), GU1

j
(s))αg + |eSng|Cαg (U2

j )d(GU2
j
(r), GU2

j
(s))αg

6 C|eSng|C0(U1
j )|r − s|αg .
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Thus, this quantity is bounded by the min of the two estimates. This min is maximal
when the two upperbounds are equal, that is when ε̃ = C|r − s|. Therefore, the β-Hölder
constant satisfies

Hβ
Ij

(eSng ◦GU1
j
− eSng ◦GU2

j
) 6 Cε̃αg−β|eSng|C0(U1

j ) .

We therefore have proved that

|eSng ◦GU1
j
− eSng ◦GU2

j
|Cβ(Ij) 6 Cε̃αg−β|eSng|C0(U1

j ) .

Combining the above estimates inside (3.5.10), we finally have

|φj − ψ2 ◦ TneSng|Cβ(U2
j ) 6 Cε̃α−β|eSng|C0(U1

j ) .

Summing over j yields

∑
j

∣∣∣∣∣
∫
U2
j

f(φj − ψ2 ◦ TneSng)dm
∣∣∣∣∣ 6 C| log δ0|−γ ||f ||sε̃α−β2δ−1

0
∑

A∈Mn
0

|eSng|C0(A),

where we used Lemma 3.3.1(b) with γ = 0 since there is at most one matched piece U lj
corresponding to each component W l

i ∈ Gδ0n (W l) of T−nW l. Since δ0 < 1 is fixed, this
completes the estimate on the second term of the matched pieces (originating from (3.5.6)).

We now turn to the estimate of the first sum in (3.5.6) concerning the unmatched
pieces.

We say an unmatched curve V 1
i is created at time j, 1 ≤ j ≤ n, if j is the first time

that Tn−jV 1
i is not part of a matched element of Gδ0j (W 1). Indeed, there may be several

curves V 1
i (in principle exponentially many in n − j) such that Tn−jV 1

i belongs to the
same unmatched element of Gδ0j (W 1). Define

Aj,k = {i | V 1
i is created at time j
and Tn−jV 1

i belongs to the unmatched curve W 1
k ⊂ T−jW 1} .

(3.5.12)

Due to the uniform hyperbolicity of T , and, again, uniform transversality of S−n with the
stable cone and of Cs(x) with Cu(x), we have |W 1

k | 6 CΛ−j ε̃.
Recall that from Lemma 3.3.1(a) for γ̄ = 0, if for a certain time q, every element of

Gδ0q (W 1
k ) have length less than δ0/3 – that is, if Gδ0q (W 1

k ) = Iδ0q (W 1
k ) – then we have the

subexponential growth ∑
V ∈Gδ0q (W 1

k
)

|eSqg|C0(V ) 6 2(Km+ 1)q/meq sup g . (3.5.13)

We would like to establish a lower bound on the value of q as a function of j.
More precisely, we want to find q(j), as large as possible, so that
(a) Gδ0q(j)(W

1
k ) = Iδ0q(j)(W

1
k );

(b) | log |V ||−γ

| log ε̃|−ς 6 1, for all V ∈ Iδ0q(j)(W
1
k ).

This is the content of the next two lemmas.

Lemma 3.5.4. If W ∈ Ŵs is such that C̃2|W |2−kn0s0 < δ0/3 for some k > 1, where C̃
is the constant from (3.3.2). Then Gδ0kn0

(W ) = Iδ0kn0
(W ), and for all 1 6 l 6 k, and all

Wi ∈ Gδ0ln0
(W ), |Wi| 6 C̃2|W |2−ln0s0 .
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Proof. We prove the lemma by induction on k. We start with the case k = 1. Let 1 6 l 6 n0
and Wi ∈ Gδ0l (W ). Denote V = T lWi ⊂ W . Then, for all 0 6 j 6 l, |T jWi| 6 δ0.
Decomposing T−lV = Wi as in the beginning of the proof of Lemma 3.3.1, we get that
|Wi| 6 C̃|W |2−n0s0 , which is less than δ0/3 by assumption. Thus, Gδ0l (W ) = Sδ0l (W ) for
each 0 6 l 6 n0. Therefore Gδ0n0(W ) = Iδ0n0(W ), with the claimed estimate.

Consider now the case k > 1. Notice that, by construction, we have

Gδ0(k+1)n0
(W ) =

⋃
Wi∈G

δ0
kn0

(W )

Gδ0n0(W ).

Thus, we can apply the same method to estimate the length of an element Wi ∈ Gδ0kn0+l(W )
from the length of its parent in Gδ0kn0

(W ), iterating the estimates in the same fashion as for
(3.3.2).

Lemma 3.5.5. The above conditions (a) and (b) are satisfied for q(j) := (γ−ζ) log(j−j0)
γs0 log 2 −1,

for all j > j1, where j1 > j0 > 0 are constants (uniform in ε̃ and W 1
k ). For j < j1, set

q(j) = 0.

Proof. Since |W 1
k | 6 Cε̃Λ−j and using Lemma 3.5.4, the condition (a) will be satisfied

whenever C̃2(Cε̃Λ−j)2−qs0 6 δ0/3.
Let j0 be such that CΛ−j0 < 1. Then (a) is satisfied whenever C̃2Λ−(j−j0)2−qs0 6 δ0/3,

that is

q 6
log(j − j0)
s0 log 2 − C2 , with C2 := 1

s0 log 2 log
log 3C̃2

δ0

log Λ . (3.5.14)

Note that C2 is uniform, and that the right-hand-side of (3.5.14) is larger than q(j) for all
j large enough, say j > j1.

Using the estimate from Lemma 3.5.4, condition (b) is satisfied whenever q is such that
| log C̃2(Cε̃Λ−j)2−qs0 |γ > | log ε̃|ζ . Now, we have that

| log C̃2(Cε̃Λ−j)2−qs0 | = | log C̃2 + 2−qs0 log(Cε̃Λ−j)| > 1
2 |2
−qs0 log(Cε̃Λ−j)|,

whenever

q + 1 6
log(j − j0)
s0 log 2 + C3 , with C3 = 1

s0 log 2 log log Λ
log C̃2 (3.5.15)

Note that C3 is uniform, and that the right-hand-side of (3.5.15) is larger than q(j) for all
j large enough, say j > j1 (up to increasing the value of j1).

We thus have to prove that | logCε̃Λ−j |γ > 2(q+1)s0γ | log ε̃|ζ (which implies (b)). Notice
that, from the definition of q(j), we have 2(q(j)+1)s0γ 6 (j − j0)γ−ζ . We distinguish two
cases.

Assume first that (j − j0) log Λ > | log ε̃|. Therefore

2(q(j)+1)γ | log ε̃|ζ 6 (j − j0)γ−ζ | log ε̃|ζ 6 (j − j0)γ(log Λ)ζ 6 ((j − j0) log Λ)γ

6 ((j − j0) log Λ + | log ε̃|+ | logCΛ−j0 |)γ

6 | − (j − j0) log Λ + log ε̃+ logCΛ−j0 |γ

6 | logCε̃Λ−j |γ .
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On the other hand, if (j − j0) log Λ 6 | log ε̃|, then

2(q(j)+1)γ | log ε̃|ζ 6 (j − j0)γ−ζ | log ε̃|ζ 6 | log ε̃|γ−ζ

(log Λ)γ−ζ | log ε̃|ζ 6 | log ε̃|γ

6 ((j − j0) log Λ + | log ε̃|+ | logCΛ−j0 |)γ

6 | − (j − j0) log Λ + log ε̃+ logCΛ−j0 |γ

6 | logCε̃Λ−j |γ .

Thus, the choice q(j) satisfies (a) and (b) for all j > j1.

Next, recalling the Aj,k from (3.5.12), we estimate 15 over the unmatched pieces V l
i in

(3.5.6), using the strong stable norm. Since cases l = 1 and l = 2 are similar here, we only
deal with the case l = 1.∑
V 1
i

∣∣∣∣∣
∫
V 1
i

fψ1 ◦ TneSngdmV 1
i

∣∣∣∣∣ =
n∑
j=1

∑
k

∑
i∈Aj,k

∣∣∣∣∣
∫
Tn−jV 1

i

(Ln−jg f)ψ1 ◦ T jeSjg
∣∣∣∣∣

6
n∑
j=1

∑
k

∑
Vl∈G

δ0
q(j)(W

1
k

)

∣∣∣∣∫
Vl

(Ln−j−q(j)g f)ψ1 ◦ T j+q(j)eSj+q(j)g
∣∣∣∣

6
n∑
j=1

∑
k

∑
Vl∈G

δ0
q(j)(W

1
k

)

||Ln−j−q(j)g f ||sC| log |Vl||−γ |ψ1 ◦ T j+q(j)|Cβ(Vl)|e
Sj+q(j)g|Cβ(Vl)

6 C||f ||s
n∑
j=1

C

c1δ0
e(n−j−q(j))P∗(T,g)| log ε̃|−ζ

∑
k

∑
Vl∈G

δ0
q(j)(W

1
k

)

|eSj+q(j)g|Cβ(Vl)

6
C

c1δ0
||f ||s

n∑
j=1

e(n−j−q(j))P∗(T,g)| log ε̃|−ζ
∑

W 1
k
⊂T−jW 1

∑
Vl∈G

δ0
q(j)(W

1
k

)

|eSjg◦T q(j)+Sq(j)g|Cβ(Vl)

6
C

c1δ0
||f ||s

n∑
j=1

e(n−j−q(j))P∗(T,g)| log ε̃|−ζ
∑

W 1
k
⊂T−jW 1

|eSjg|C0(W 1
k

)
∑

Vl∈G
δ0
q(j)(W

1
k

)

|eSq(j)g|C0(Vl)

6
C

c1δ0
||f ||s

n∑
j=1

e(n−j−q(j))P∗(T,g)| log ε̃|−ζ 4C
c1δ0

ejP∗(T,g)eq(j) sup g(Km+ 1)q(j)/m

6
C

(c1δ0)2 ||f ||s| log ε̃|−ζenP∗(T,g)
n∑
j=1

e−q(j)(P∗(T,g)−sup g− 1
m

log(Km+1)).

Now, for ε̃ > 0, fixed, since we assume that P∗(T, g)−sup g > s0 log 2, we can chose m large
enough and ζ small enough such that ε1 := P∗(T, g)−sup g− 1

m log(Km+1)− γ
γ−ζ s0 log 2 > 0.

By definition of q(j), we obtain that
n∑

j=j1
e−q(j)(P∗(T,g)−sup g− 1

m
log(Km+1)) =

n∑
j=j1

e
− (γ−ζ) log(j−j0)

γs0 log 2 (ε1+ γ
γ−ζ s0 log 2)

=
n∑

j=j1
(j − j0)−1− γ−ζ

γs0 log 2 ε1 ,

is bounded. The bound (3.5.3) then follows by combining all the above estimates into
(3.5.6) and taking the appropriate suprema.
15. For the 4th and 6th inequalities, we use Proposition 3.3.10. Here again, P∗(T, g) can be replaced by

P∗(T, g) + ε up to a larger multiplicative constant.
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Remark 3.5.6. In the case g = −htop(φ1)τ , the assumption P∗(T, g) − sup g > s0 log 2
in Proposition 3.5.1 is implied by the condition htop(φ1)τmin > s0 log 2, which is itself
implied by τminhµSRB(T )/µSRB(τ) > s0 log 2 thanks to the Abramov formula. This latter
condition appears to be satisfied for billiards studied by Baras and Gaspard [GB95] and by
Garrido [Gar97], as long as τmin is not too small.

d

(a)

R

R′

(b)

Figure 3.1 – (a) The Sinai billiard on a triangular lattice studied in [GB95] with angle π/3,
scatterer of radius 1, and distance d between the centers of adjacent scatterers. (b) The Sinai
billiard on a square lattice with scatterers of radius R < R′ studied in [Gar97]. The boundary
of a single cell is indicated by dashed lines in both tables.

Indeed, Garrido [Gar97] studied the Sinai billiard corresponding to the periodic Lorentz
gas with two scatterers of radius R < R′ on the unit square lattice (Figure 3.1(b)). Setting
R′ = 0.4, Garrido computed hµSRB(T ) and µSRB(τ) for about 20 values of R ranging from
R = 0.1 (when the horizon becomes infinite) to R =

√
2

2 − 0.4 (when the scatterers touch:
τmin = 0). According to [BD20, § 2.4], in those examples we can always find ϕ0 and n0
such that s0 6 1

2 . Furthermore, τmin =
√

2
2 − 0.4−R. Now, for R = 0.1+, we find that

τminhµSRB(T )/µSRB(τ) > (
√

2
2 − 0.5)1.7

0.5 > 0.7 > 1
2 log 2 > s0 log 2 ,

and for R = 0.2, we find that

τminhµSRB(T )/µSRB(τ) > (
√

2
2 − 0.6)1.4

0.3 > 0.48 > 1
2 log 2 > s0 log 2 .

Since for R ∈ (0.1, 0.2], R 7→ τmin(R) is a linear function, and according to Garrido Figures 6
and 8, R 7→ µSRB(τ)(R) is well approximated by an affine function and R 7→ hµSRB(T )(R)
is lower bounded by an affine function joining the values at R = 0.1 and 0.2, it appears
that the condition τminhµSRB(T )/µSRB(τ) > s0 log 2 is satisfied for all R ∈ (0.1, 0.2].

Baras and Gaspard studied the Sinai billiard corresponding to the Lorentz gas with disks
of radius 1 centered in a triangular lattice (Figure 3.1(a)). The distance d between points
on the lattice is varied from d = 2 (when the scatterers touch: τmin = 0) to d = 4/

√
3

(when the horizon becomes infinite). We have that τmin = d − 2 and, still according
to [BD20, § 2.4], in those examples we can always find ϕ0 and n0 such that s0 6 1

2 . The
computed values are the average Lyapunov exponent of the billiard flows given in [GB95],
provide a lower bound directly on hµSRB(T )/µSRB(τ). For d = 0.2, we find

τminhµSRB(T )/µSRB(τ) > ( 4√
3 − 2) 1.8 > 0.55 > 1

2 log 2 > s0 log 2 .

The condition htop(φ1)τmin > s0 log 2 is a little bit more restrictive than the one used
by Baladi and Demers in [BD20] since, by the Abramov formula, h∗ = htop(φ1)µ∗(τ) >
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htop(φ1)τmin. (Also, we do not know any example of billiard for which the condition
h∗ > s0 log 2 is not satisfied.)

We now turn to the condition SSP.1. Unfortunately, we don’t know any billiard table
such that the potential g = −htop(φ1)τ satisfies a simple condition implying SSP.1. By
simple, we mean a sufficient condition that does not involve topological entropies, since
they are notoriously hard to estimate numerically. First, recall from Lemmas 3.3.3 and
3.3.4 that log Λ > htop(φ1)(τmax − τmin) implies SSP.1. Remark that since g and 1

nSng are
cohomologous, they would give rise to the same equilibrium states. It is then advantageous to
work with the Birkhoff average instead of g because max 1

nSng 6 τmax and min 1
nSng = τmin

(notice that τmin is achieved on an orbit of period 2). Now, taking advantage of the
Abramov formula and of the variational principle, we get that max 1

nSng < 2τmin implies
h∗ > htop(φ1)(max 1

nSng − τmin) (recall that h∗ > log Λ is the topological entropy of T , as
defined in [BD20]). The condition max 1

nSng < 2τmin involves quantities that are easy to
estimate numerically, however, we don’t know any billiard table satisfying this condition.

We now deduce the bounds of Theorem 3.5.3 from the rate of growth of stable curves
proved in Proposition 3.3.7.

Proof of Theorem 3.5.3. To prove this lower bound on |Lng1|w, recall the choice of δ1 > 0
from Lemma 3.3.3 for ε = 1/4 (thus satisfying (3.3.4)). Let W ∈ Ws with |W | > δ1/3 and
set the test function ψ ≡ 1. For n > n1,∫
W
Lng1dmW =

∑
Wi∈G

δ1
n (W )

∫
Wi

eSngdmWi >
∑

Wi∈G
δ1
n (W )

δ1
2 inf

Wi

eSng >
δ1
2 C

−1 ∑
Wi∈G

δ1
n (W )

sup
Wi

eSng,

where we used Lemma 3.2.3 for the second inequality, since for each Wi ∈ Gδ1n (W ) there
exists A ∈Mn

0 such that Wi ⊂ A and

sup
Wi

eSng 6 sup
A
eSng 6 C inf

A
eSng 6 C inf

Wi

eSng.

We can now use Proposition 3.3.7 to get∫
W
Lng1dmW >

δ1
2C c0

∑
A∈M0

−n

|eS
−1
n g|C0(A) >

δ1
2C c0e

nP∗(T,g). (3.5.16)

Thus
||Lng1||s > |Lng1|w >

δ1
2 c0e

nP∗(T,g).

Letting n tend to infinity, one obtains lim
n→∞

||Lng1||1/nB > eP∗(T,g).

3.6 The measure µg
This section is devoted to the construction, the properties and the uniqueness of an
equilibrium state µg for T , associated to a potential g.

We will assume throughout that g is a (M1
0, αg)-Hölder potential such that P∗(T, g)−

sup g > s0 log 2 and that the conditions SSP.1 and SSP.2 are satisfied.
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3.6.1 Construction of the measure µg – Measure of Singular Sets

In this section, we construct a T -invariant probability measure µg on M by combining in
(3.6.1) a maximal eigenvector of Lg on B and a maximal eigenvector of its dual, obtained
in Proposition 3.6.1. In addition, the information on these left and right eigenvectors will
give Lemma 3.6.2 and Corollary 3.6.3, which imply that µg is T -adapted.

We first show that such maximal eigenvectors exist and are in fact nonnegative Radon
measures – that is, elements of the dual of C0(M).

Proposition 3.6.1. If g is a (M1
0, αg)-Hölder continuous potential such that P∗(T, g)−

sup g > s0 log 2 and log Λ > sup g − inf g, then there exist ν ∈ Bw and ν̃ ∈ B∗w such
that Lgν = eP∗(T,g)ν and L∗gν̃ = eP∗(T,g)ν̃. In addition, ν and ν̃ take nonnegative values
on nonnegative C1 functions on M and are thus nonnegative Radon measures. Finally,
ν̃(ν) 6= 0 and ||ν||u 6 C.

It is easy to see that |fϕ|w ≤ |ϕ|C1 |f |w (use |ϕψ|Cα(W ) ≤ |ϕ|C1 |ψ|Cα(W )). Clearly, if
f ∈ C1 and ϕ ∈ C1 then fϕ ∈ C1. Therefore, if P∗(T, g)− sup g > s0 log 2 and both SSP
conditions are satisfied, a bounded linear map µg from C1(M) to C can be defined by
taking ν and ν̃ from Proposition 3.6.1 and setting

µg(ϕ) = ν̃(ϕν)
ν̃(ν) . (3.6.1)

This map is nonnegative for all nonnegative ϕ and thus defines a nonnegative measure
µg ∈ (C0(M))∗, with µg(1) = 1. Clearly, µg is a T invariant probability measure since for
every ϕ ∈ C1 we have

ν̃(ϕν) = e−P∗(T,g)ν̃(ϕLg(ν)) = e−P∗(T,g)ν̃(Lg((ϕ ◦ T )ν)) = ν̃((ϕ ◦ T )ν) = ν̃(ν)µg(ϕ ◦ T ) .

Proof. Let 1 denote the constant function equal to 1 on M . We will take this as a
seed in our construction of a maximal eigenvector. By Theorem 3.5.3, we see that
‖Lng1‖B > ‖Lng1‖s > |Lng1|w > CenP∗(T,g). Now consider

νn := 1
n

n−1∑
k=0

e−kP∗(T,g)Lkg1, n > 1. (3.6.2)

By construction, the νn are nonnegative, and thus can be extended into Radon measures.
By Proposition 3.5.1, they satisfy ||νn||B 6 C, so using the relative compactness of B in
Bw ( [BD20, Proposition 6.1]), we extract a subsequence (nj) such that limj νnj = ν is a
nonnegative Radon measure, and the convergence is in Bw. Since Lg is continuous on Bw,
we may write,

Lgν = lim
j→∞

1
nj

nj−1∑
k=0

e−kP∗(T,g)Lk+1
g 1

= lim
j→∞

eP∗(T,g)

nj

nj−1∑
k=0

e−kP∗(T,g)Lkg1−
1
nj
eP∗(T,g)1 + 1

nj
e(nj−1)P∗(T,g)Lnjg 1

= eP∗(T,g)ν,

where we used that the second and third terms go to 0 (in the B-norm). We thus obtain a
nonnegative measure ν ∈ Bw such that Lgν = eP∗(T,g)ν.
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Although ν is not a priori an element of B, it does inherit bounds on the unstable norm
from the sequence νn. The convergence of (νnj ) to ν in Bw implies that

lim
j→∞

sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )61

(∫
W
νψ dmW −

∫
W
νnjψ dmW

)
= 0 .

Since ||νnj ||u 6 C, it follows that ||ν||u 6 C, as claimed.
Next, recalling the bound |

∫
fdµSRB| 6 Ĉ|f |w from [BD20, Proposition 4.2], setting

dµSRB ∈ (Bw)∗ to be the functional defined on C1(M) ⊂ Bw by dµSRB(f) =
∫
fdµSRB and

extended by density, we define

ν̃n := 1
n

n−1∑
k=0

e−kP∗(T,g)(L∗g)k(dµSRB). (3.6.3)

Then, we have |ν̃n(f)| 6 C|f |w for all n and all f ∈ Bw. So ν̃n is bounded in (Bw)∗ ⊂ B∗.
By compactness of the embedding ( [BD20, Proposition 6.1]), we can find a subsequence
ν̃ñj converging to ν̃ ∈ B∗. By the argument above, we have L∗gν̃ = eP∗(T,g)ν̃.

We next check that ν̃, which in principle lies in the dual of B, is in fact an element of
(Bw)∗. For this, it suffices to find C̃ <∞ so that for any f ∈ B we have

ν̃(f) 6 C̃|f |w. (3.6.4)

Now, for f ∈ B and any nj > 1, we have

|ν̃(f)| 6 |(ν̃nj − ν̃)(f)|+ |ν̃nj (f)| 6 |(ν̃nj − ν̃)(f)|+ |f |w.

Since ν̃ñj → ν̃ in B∗, we conclude |ν̃(f)| 6 |f |w for all f ∈ B. Since B is dense in Bw,
by [RS80, Thm I.7] ν̃ extends uniquely to a bounded linear functional on Bw satisfying
(3.6.4). It only remains to prove that ν̃(ν) > 0.

Let (nj) (resp. (ñj)) denote the subsequence such that ν = limj νnj (resp. ν̃ = limj ν̃ñj ).
Since ν̃ is continuous on Bw, we have on the one hand

ν̃(ν) = lim
j→∞

ν̃(νnj ) = lim
j→∞

1
nj

nj−1∑
k=0

e−kP∗(T,g)ν̃(Lkg1) = lim
j→∞

1
nj

nj−1∑
k=0

ν̃(1) = ν̃(1),

where we have used that ν̃ is an eigenvector of L∗g. On the other hand,

ν̃(1) = lim
j→∞

1
ñj

ñj−1∑
k=0

e−kP∗(T,g)(L∗g)kdµSRB(1) = lim
j→∞

1
ñj

ñj−1∑
k=0

e−kP∗(T,g)
∫
Lkg1 dµSRB.

Next, we disintegrate dµSRB as in the proof of [BD20, Lemma 4.4] into conditional measure
µ
Wξ
SRB on maximal homogeneous stable manifolds Wξ ∈ Ws

H
and a factor measure dµ̂SRB(ξ)

on the index set Ξ of stable manifolds. Recall that µWξ
SRB = |Wξ|−1ρξdmW , where ρξ is

uniformly log-Hölder continuous so that

0 < cρ 6 inf
ξ∈Ξ

inf
Wξ

ρξ 6 sup
ξ∈Ξ
|ρξ|Cα(Wξ) 6 Cρ <∞. (3.6.5)
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Let Ξδ1 denote those ξ ∈ Ξ such that |Wξ| > δ1/3 and note that µ̂SRB(Ξδ1) > 0. Then,
disintegrating as usual, we get by (3.5.16) for k > n1,∫

Lkg1dµSRB =
∫

Ξ

∫
Wξ

Lkg1ρξ|Wξ|−1dmWξ
dµ̂SRB(ξ)

>
∫

Ξδ1

∫
Wξ

Lkg1dmWξ
cρ3δ−1

1 dµ̂SRB(ξ) > cρ
3c0
2C e

kP∗(T,g)µ̂SRB(Ξδ1) > 0.

Thus ν̃(ν) = ν̃(1) > cρ
3c0
2C µ̂SRB(Ξδ1) > 0 as required.

Lemma 3.6.2. For any γ > 0 such that 2s0γ < eP∗(T,g)−sup g and any k ∈ Z there exists
Ck > 0 such that

µg(Nε(Sk)) 6 Ck| log ε|−γ , ∀ε > 0. (3.6.6)

In particular, for any p > 1/γ (one can choose p < 1 for γ > 1), η > 0, and k ∈ Z, for
µg-almost every x ∈M , there exists C > 0 such that

d(Tnx,Sk) > Ce−ηn
p
, ∀n > 0. (3.6.7)

Proof. First, for each k > 0, we claim that there exists Ck > 0 such that for all ε > 0,

|ν(Nε(Sk))| 6 C|1k,εν|w 6 Ck| log ε|−γ , (3.6.8)

where 1k,ε = 1Nε(Sk). The proof of the first inequality in (3.6.8) is formally the same as in
the proof of [BD20, Lemma 7.3].

We now prove the second inequality in (3.6.8). Let W ∈ Ws and ψ ∈ Cα(W ) with
|ψ|Cα(W ) 6 1. Due to the uniform transversality of curves in S−k with the stable cone, the
intersection W ∩Nε(S−k) can be expressed as a finite union with cardinality bounded by a
constant Ak (depending only on S−k) of stable manifolds Wi ∈ Ws, of lengths at most Cε.
Therefore, for any f ∈ C1(M),∫

Wξ

f1k,εψ dmW =
∑
i

∫
Wi

fψ dmWi 6
∑
i

|f |w|ψ|Cα(Wi) 6 CAk|f |w.

It follows that |1k,εf |w 6 Ak|f |w for all f ∈ Bw. Similarly, we have |1k,εf |w 6 Ak||f ||s| log ε|−γ

for all f ∈ B. Now, recalling νn, we estimate,

|1k,εν|w 6 |1k,ε(ν − νn)|w + |1k,ενn|w 6 Ak|ν − νn|w + C ′k| log ε|−γ ||νn||B.

Since ||νn||B 6 C for all n > 1, we take the limit as n → ∞ to conclude that |1k,εν|w 6
Ck| log ε|−γ , concluding the proof of (3.6.8).

Next, applying (3.6.4), we have

ν̃(ν)µg(Nε(S−k)) = ν̃(1k,εν) 6 C̃|1k,εν|w 6 C̃Ck| log ε|−γ ∀k > 0 .

To obtain the analogous bound for Nε(Sk), for k > 0, we use the invariance of µg. It
follows from [CM06, Exercice 4.50] that T (Nε(S1)) ⊂ NCε1/2(S−1). Thus,

µg(Nε(S1)) 6 µg(NCε1/2(S−1)) 6 C1| logCε1/2|−γ 6 C ′1| log ε|−γ .

The estimate for Nε(Sk), for k > 2, follows similarly since T kSk = S−k.
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Finally, fix η > 0, k ∈ Z and p > 1/γ. Since∑
n>0

µg(Ne−ηnp (Sk)) 6 C̃Ckη
−γ ∑

n>1
n−pγ <∞ , (3.6.9)

by the Borel–Cantelli Lemma, the positive orbit of µg-almost every x ∈M visits Ne−ηnp (Sk)
only finitely many times, and the last part of the lemma follows.

Corollary 3.6.3. a) For any γ > 0 so that P∗(T, g)−sup g > γs0 log 2 and any C1 curve
S uniformly transverse to the stable cone, there exists C > 0 such that ν(Nε(S)) 6
C| log ε|−γ and µg(Nε(S)) 6 C| log ε|−γ for all ε > 0.

b) The measures ν and µg have no atoms, and µg(W ) = 0 for all W ∈ Ws and W ∈ Wu.

c) The measure µg is adapted:
∫
| log d(x,S±1)|dµg <∞.

d) µg-almost every point in M has a stable and unstable manifold of positive length.

Proof. The proof is identical to the one of [BD20, Corollary 7.4], where µ∗ should be
replace by µg.

3.6.2 ν-Almost Everywhere Positive Length of Unstable Manifolds

In this section, we establish almost everywhere positive length of unstable manifolds in the
sense of the measure ν – the maximal eigenvector of Lg in Bw, extended into a measure
since it is nonnegative distribution. To do so, we will view elements of Bw as leafwise
measure (Definition 3.6.4). Indeed, in Lemma 3.6.6, we make a connection between the
disintegration of ν as a measure, and the family of leafwise measures on the set of stable
manifolds Ws.

Definition 3.6.4 (Leafwise distribution and leafwise measure). For f ∈ C1(M) and
W ∈ Ws, the map defined on Cα(W ) by

ψ 7→
∫
W
fψ dmW ,

can be viewed as a distribution of order α on W . Since |
∫
W fψ dmW | 6 |f |w|ψ|Cα(W ), we

can extend the map sending f ∈ C1(M) to this distribution of order α, to f ∈ Bw. We
denote this extension by

∫
W fψ dmW or

∫
W ψf , and we call the corresponding family of

distributions (f,W )W∈Ws the leafwise distribution associated to f ∈ Bw.
Note that if

∫
W fψdmW > 0 for all ψ > 0, then the leafwise distribution on W can be

extended into a bounded linear functional on C0(W ), or in other words, a Radon measure.
If this holds for all W ∈ Ws, the leafwise distribution is called a leafwise measure.

Lemma 3.6.5 (Almost Everywhere Positive Length of Unstable Manifolds, for ν). For
ν-almost every x ∈M the stable and unstable manifolds have positive length. Moreover,
viewing ν as a leafwise measure, for every W ∈ Ws, ν-almost every x ∈W has an unstable
manifold of positive length.

Lemma 3.6.6. Let νWξ and ν̂ denote the conditional measures and factor measure obtained
by disintegrating ν on the set of homogeneous stable manifolds Wξ ∈ Ws

H
, ξ ∈ Ξ. Then for

any ψ ∈ Cα(M),∫
Wξ

ψ dνWξ =
∫
Wξ

ψρξ ν∫
Wξ

ρξ ν
∀ξ ∈ Ξ, and dν̂(ξ) = |Wξ|−1

(∫
Wξ

ρξν

)
dµ̂SRB(ξ).
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Moreover, viewed as a leafwise measure, ν(W ) > 0 for all W ∈ Ws.

Proof. First, we establish the following claim: For W ∈ Ws, we let n2 6 C2| log(|W |/δ)|
be the constant from the proof of Corollary 3.3.6 (This is the first time l such that Gδ1l (W )
has at least one element of length at least δ1/3.) Then there exists C > 0 such that for all
W ∈ Ws, ∫

W
ν > C|W |(P∗(T,g)−sup g)C2 . (3.6.10)

Indeed, recalling (3.6.2) and using Theorem 3.5.3, we have for C = c0
2C δ

1−(P∗(T,g)−inf g)C2
1 ,

∫
W
ν = lim

nj

1
nj

nj−1∑
k=0

e−kP∗(T,g)
∫
W
Lkg1 dmW

> lim
nj

1
nj

nj−1∑
k=n2

e−kP∗(T,g)
∑

Wi∈G
δ1
n2 (W )

∫
Wi

eSn2gLk−n2
g 1 dmWi

> lim
nj

1
nj

nj−1∑
k=n2

e−kP∗(T,g)en2 inf gCδ1
2 c0e

P∗(T,g)(k−n2)

>
Cδ1

2 c0e
−n2(P∗(T,g)−inf g) > C|W |(P∗(T,g)−sup g)C2 .

This proves the last statement of the lemma.
Next, for any f ∈ C1(M), according to our convention, we view f as an element of Bw

by considering it as a measure integrated against µSRB. Now let (νnj )j be the sequence of
functions defined by (3.6.2) such that |νnj − ν|w → 0. For any ψ ∈ Cα(M), we have

νnj (ψ) =
∫
M
νnjψ dµSRB =

∫
Ξ

∫
Wξ

νnjψρξ dmWξ
|Wξ|−1 dµ̂SRB(ξ)

=
∫

Ξ

∫
Wξ

νnjψρξ dmWξ∫
Wξ

νnjρξ dmWξ

d(µ̂SRB)nj (ξ)

where d(µ̂SRB)nj (ξ) = |Wξ|−1 ∫
Wξ

νnjρξ dmWξ
dµ̂SRB(ξ). By definition of convergences in Bw

since ψ, ρξ ∈ Cα(Wξ), the ratio of integrals converges (uniformly in ξ) to
∫
Wξ

ψρξν/
∫
Wξ

ρξν,
and the factor measure converges to |Wξ|−1( ∫

Wξ
ρξ ν

)
dµ̂SRB(ξ). Note that since ρξ is

uniformly log-Hölder, and due to (3.6.10), we have
∫
Wξ

ρξν > 0 with lower bound depending
only on the length of Wξ. Finally, by [BD20, Proposition 4.2] and [BD20, Lemma 4.4], we
have νnj (ψ) converging to ν(ψ). Disintegrating ν according the statement of the lemma
yields to the claimed identifications.

Proof of Lemma 3.6.5. The statement about stable manifolds of positive length follows
from the characterization of ν̂ in Lemma 3.6.6, since the set of points with stable manifolds
of zero length has zero µ̂SRB-measure [CM06].

We fix W ∈ Ws and prove the statement about ν as a leafwise measure. This will
imply the statement regarding unstable manifolds for the measure ν by Lemma 3.6.6.

Fix ε > 0 and Λ̂ ∈ (1,Λ), and define O = ∪n>1On, where

On := {x ∈W | n = min{j > 1 | du(T−jx,S1) < εCeΛ̂−j}},
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and du denotes distance restricted to the unstable cone. By [CM06, Lemma 4.67], any
x ∈ W r O has an unstable manifold of length at least 2ε. We now estimate ν(O) =∑
n>1 ν(On), where equality holds since the On are disjoint. Since each On is a finite union

of open subcurves of W , we have

∫
W
1Onν = lim

j→∞

∫
W
1Onνnj = lim

j→∞

1
nj

nj−1∑
k=0

e−kP∗(T,g)
∫
W
1OnLkg1 dmW . (3.6.11)

We give estimates in two cases.
Case I: k < n. Write

∫
W∩On L

k
g1 dmW =

∑
Wi∈G

δ0
k

(W )
∫
Wi∩T−kOn e

Skg dmWi .

If x ∈ T−kOn, then y = T−n+kx satisfies du(y,S1) < εCeΛ̂−n and thus we have
du(Ty,S−1) 6 Cε1/2Λ̂−n/2. Due to the uniform transversality of stable and unstable cones,
as well as the fact that elements of S−1 are uniformly transverse to the stable cone, we
have ds(Ty,S−1) 6 Cε1/2Λ̂−n/2 as well, with possibly a larger constant C.

Let rs−j(x) denote the distance from T−jx to the nearest endpoint of W s(T−jx), where
W s(T−jx) is the maximal local stable manifold containing T−jx. From the above analysis,
we see that Wi ∩ T−kOn ⊆ {x ∈Wi : rs−n+k+1(x) 6 Cε1/2Λ̂−n/2}. The time reversal of the
growth lemma [CM06, Thm 5.52] gives mWi(rs−n+k+1(x) 6 Cε1/2Λ̂−n/2) 6 C ′ε1/2Λ̂−n/2

for a constant C ′ that is uniform in n and k. Thus, using Proposition 3.3.10, we find∫
W∩On

Lkg1 dmW 6 C ′ε1/2Λ̂−n/2
∑

Wi∈G
δ0
k

(W )

|eSkg|C0(Wi) 6 CekP∗(T,g)ε1/2Λ̂−n/2 .

Case II: k > n. Using the same observation as in Case I, if x ∈ T−n+1On, then x satisfies
ds(x,S−1) 6 Cε1/2Λ̂−n/2. We change variables to estimate the integral precisely at time
−n+ 1, and then use Propositions 3.5.1 and 3.3.10, and Lemma 3.3.12,∫

W∩On
Lk1 dmW =

∑
Wi∈G

δ0
n−1(W )

∫
Wi∩T−n+1On

eSn−1gLk−n+1
g 1 dmWi

6
∑

Wi∈G
δ0
n−1(W )

∫
Wi∩(rs16Cε1/2Λ̂−n/2)

eSn−1gLk−n+1
g 1 dmWi

6
∑

Wi∈G
δ0
n−1(W )

| log |Wi ∩ (rs1 6 Cε1/2Λ̂−n/2)||−γ |eSn−1g|Cβ(Wi)‖L
k−n+1
g 1‖s

6
∑

Wi∈G
δ0
n−1(W )

| log(Cε1/2Λ̂−n/2)|−γC|eSn−1g|C0(Wi)e
(k−n+1)P∗(T,g)

6 | log(Cε1/2Λ̂−n/2)|−γCekP∗(T,g) .

Using the estimates of Cases I and II in (3.6.11) and using the weaker bound, we see that,∫
W
1On νnj 6 C| log(Cε1/2Λ̂−n/2)|−γ .

Summing over n, we have,
∫
W 1O νnj 6 C ′| log ε|1−γ , uniformly in j. Since νnj converges

to ν in the weak norm, this bound carries over to ν. Since ε > 0 was arbitrary and γ > 1,
this implies ν(O) = 0, completing the proof of the lemma.
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3.6.3 Absolute Continuity of µg – Full Support

In this subsection, we will assume that γ > 1, which is possible since P∗(T, g)− sup g >
s0 log 2. In the next subsection, we prove that µg is Bernoulli. This proof relies on showing
first that µg is K-mixing. As a first step, we will prove that µg is ergodic, using a Hopf-type
argument. This will require the absolute continuity of the stable and the unstable foliations
for µg, which will be deduce from SSP.2 and the following absolute continuity for ν:

Proposition 3.6.7. Let R be a Cantor rectangle. Fix W 0 ∈ Ws(R) and for W ∈ Ws(R),
let ΘW denote the holonomy map from W 0 ∩ R to W ∩ R along unstable manifolds in
Wu(R). Then for any (M1

0, αg)-Hölder potential with P∗(T, g)−sup g > s0 log 2 and having
SSP.1, ΘW is absolutely continuous with respect to the leafwise measure ν.

Proof. Since by Lemma 3.6.5 unstable manifolds comprise a set of full ν-measure, it suffices
to fix a set E ⊂W 0∩R with ν-measure zero, and prove that the ν-measure of ΘW (E) ⊂W
is also zero.

Since ν is a regular measure on W 0, for ε > 0, there exists an open set Oε ⊂ W 0,
Oε ⊃ E, such that ν(Oε) 6 ε. Indeed, since W 0 is compact, we may choose Oε to be a
finite union of intervals. Let ψε be a smooth function which is 1 on Oε and 0 outside of an
ε-neighbourhood of Oε. We may choose ψε so that

∫
W 0 ψε ν < 2ε.

Using (3.5.4), we choose n = n(ε) such that |ψε ◦ Tn|C1(T−nW 0) 6 1 and Λ−n 6 ε.
Following the procedure described in the proof of the estimate on the unstable norm
in Proposition 3.5.1, we subdivide T−nW 0 and T−nW into matched pieces U0

j , Uj and
unmatched pieces V 0

i , Vi. With this construction, none of the unmatched pieces TnV 0
i

intersect an unstable manifold in Wu(R) since unstable manifolds are not cut under T−n.
Indeed, on matched pieces, we may choose a foliation Γj = {γx}x∈U0

j
such that:

i) TnΓj contains all unstable manifolds in Wu(R) that intersect TnU0
j ;

ii) between unstable manifolds in Γj ∩T−n(Wu(R)), we interpolate via unstable curves;
iii) the resulting holonomy Θj from TnU0

j to TnUj has uniformly bounded Jacobian 16

with respect to arc-length, with bound depending on the unstable diameter of D(R),
by [BDL18, Lemmas 6.6, 6.8];

iv) pushing forward Γj to TnΓj in D(R), we interpolate in the gaps using unstable
curves; call Γ the resulting foliation of D(R);

v) the associated holonomy map ΘW extends ΘW and has uniformly bounded Jacobian,
again by [BDL18, Lemmas 6.6 and 6.8].

Using the map ΘW , we define ψ̃ε = ψε ◦Θ−1
W , and note that |ψ̃ε|C1(W ) 6 C|ψε|C1(W 0),

where we write C1(W ) for the set of Lipschitz functions on W , i.e., Cα with α = 1.
Next, we modify ψε and ψ̃ε as follows: We set them equal to 0 on the images of

unmatched pieces, TnV 0
i and TnVi, respectively. Since these curves do not intersect

unstable manifolds in Wu(R), we still have ψε = 1 on E and ψ̃ε = 1 on ΘW (E). Moreover,
the set of points on which ψε > 0 (resp. ψ̃ε > 0) is a finite union of open intervals that
cover E (resp. ΘW (E)).

Since
∫
W 0 ψε ν < 2ε, in order to estimate

∫
W ψ̃ε ν, we estimate the following difference,

16. Indeed, [BDL18] shows the Jacobian is Hölder continuous, but we shall not need this here.
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using matched pieces∫
W 0

ψε ν −
∫
W
ψ̃ε ν = e−nP∗(T,g)

(∫
W 0

ψε Lnν −
∫
W
ψ̃ε Lnν

)
= e−nP∗(T,g)

∑
j

∫
U0
j

ψε ◦ Tn eSng ν −
∫
Uj

φj ν +
∫
Uj

(φj − ψ̃ε ◦ Tn eSng) ν ,

(3.6.12)

where φj = (ψε ◦ Tn eSng) ◦GU0
j
◦G−1

Uj
, and GU0

j
and GUj represent the functions defining

U0
j and Uj , respectively, defined as in (3.5.5). Next, since d(ψε ◦ Tn eSng, φj) = 0 by

construction, and using (3.5.8) and the assumption that Λ−n 6 ε, we have by (3.5.9),

e−nP∗(T,g)

∣∣∣∣∣∣
∑
j

∫
U0
j

ψε ◦ Tn ν −
∫
Uj

φj ν

∣∣∣∣∣∣ 6 C| log ε|−ς‖ν‖u . (3.6.13)

It remains to estimate the last term in (3.6.12). This we do using the weak norm,∫
Uj

(φj − ψ̃ε ◦ Tn eSng) ν 6 |φj − ψ̃ε ◦ Tn eSng|Cα(Uj) |ν|w . (3.6.14)

By (3.5.10), we have

|φj − ψ̃ε ◦ Tn eSng|Cα(Uj) 6 C|(ψε ◦ Tn eSng) ◦GU0
j
− (ψ̃ε ◦ Tn eSng) ◦GUj |Cα(Ij) ,

where Ij is the common r-interval on which GU0
j
an GUj are defined.

Fix r ∈ Ij , and let x = GU0
j
(r) ∈ Uj and x̄ = GUj (r). Since U0

j and Uj are matched,
there exist y ∈ U0

j and an unstable curve γy ∈ Γj such that γy ∩ Uj = x̄. By definition of
ψ̃ε, we have ψ̃ε ◦ Tn(x̄) = ψε ◦ Tn(y). Thus,

|(ψε ◦ Tn eSng) ◦GU0
j
(r)− (ψ̃ε ◦ Tn eSng) ◦GUj (r)|

6 |ψε ◦ Tn(x)− ψ̃ε ◦ Tn(x̄)||eSng(x)|+ |ψ̃ε ◦ Tn(x̄)||eSng(x) − eSng(x̄)|

6 (|ψε ◦ Tn(x)− ψε ◦ Tn(y)|+ |ψε ◦ Tn(y)− ψ̃ε ◦ Tn(x̄)|)en sup g + |eSng(x) − eSng(x̄)|

6
(
|ψε ◦ Tn|C1(U0

j )d(x, y) + |g|Cαg
Λαg

Λαg − 1(Cε)αg
)
en sup g

6 (CΛ−n + Cεαg)en sup g 6 C(ε+ εαg)en sup g ,

where we have used the fact that d(x, y) ≤ CΛ−n due to the uniform transversality of stable
and unstable curves. We also used the fact that, by definition, the vertical segment γx
connecting x to x̄ is such that |Tnγx| < Cε. Since each T iγx lies in the extended unstable
cone, for all 0 6 i 6 n, we get that d(T i(x), T i(x̄)) 6 CΛ−(n−i)ε, hence the bound

|eSng(x) − eSng(x̄)| 6 |eSng(x)| · |1− eSng(x̄)−Sng(x)| 6 2en sup g|Sng(x̄)− Sng(x)|

6
Λαg

Λαg − 1(Cε)ᾱ|g|Cαg en sup g

where we used that |1− ex| 6 2|x| when x is near 0.
Now given r, s ∈ Ij , we have on the one hand,∣∣(ψε ◦ Tn eSng) ◦GU0

j
(r)− (ψ̃ε ◦ Tn eSng) ◦GUj (r)

− (ψε ◦ Tn eSng) ◦GU0
j
(s) + (ψ̃ε ◦ Tn eSng) ◦GUj (s)

∣∣ 6 2Cεᾱen sup g ,
(3.6.15)
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while on the other hand,

|(ψε ◦ Tn eSng) ◦GU0
j
(r)− (ψ̃ε ◦ Tn eSng) ◦GUj (r)

− (ψε ◦ Tn eSng) ◦GU0
j
(s) + (ψ̃ε ◦ Tn eSng) ◦GUj (s)|

= |(ψε ◦ Tn eSng) ◦GU0
j
(r)− (ψε ◦ Tn eSng) ◦GU0

j
(s)

− ((ψ̃ε ◦ Tn eSng) ◦GUj (r)− (ψ̃ε ◦ Tn eSng) ◦GUj (s))|
6 |ψε|C0(W 0)|eSng|Cαg d(GU0

j
(r), GU0

j
(s))αg + |ψε ◦ Tn|C1(W 0)d(GU0

j
(r), GU0

j
(s))|eSng|C0

+ |ψ̃ε|C0(W )|eSng|Cαg d(GU0
j
(r), GU0

j
(s))αg + |ψ̃ε ◦ Tn|C1(W )d(GU0

j
(r), GU0

j
(s))|eSng|C0

6 (C|r − s|+ C ′|r − s|αg)en sup g 6 C|r − s|αgen sup g ,

(3.6.16)

where we have used Lemma 3.3.12 and the fact that G−1
U0
j
and G−1

Uj
have bounded derivatives

since the stable cone is bounded away from the vertical.
The difference between evaluations at r and s, divided by |r − s|α is bounded by the

minimum of expressions (3.6.15) and (3.6.16), both divided by |r − s|α. This is greatest
when the two are equal, i.e., when |r − s| = Cε. Thus Hα((ψε ◦ Tn eSng) ◦ GU0

j
− (ψ̃ε ◦

Tn eSng)◦GUj ) 6 Cεαg−αen sup g, and so |φj−ψ̃ε◦Tn eSng|Cα(Uj) 6 Cεαg−αen sup g. Putting
this estimate together with (3.6.13) and (3.6.14) in (3.6.12), we conclude,∣∣∣∣∫

W 0
ψε ν −

∫
W
ψ̃ε ν

∣∣∣∣ 6 C| log ε|−ς‖ν‖u + Cεαg−α|ν|we−n(P∗(T,g)−sup g) . (3.6.17)

Now since
∫
W 0 ψε ν 6 2ε, we have∫

W
ψ̃ε ν 6 C ′| log ε|−ς , (3.6.18)

where C ′ depends on ν. Since ψ̃ε = 1 on ΘW (E) and ψ̃ε > 0 on an open set containing
ΘW (E) for every ε > 0, we have ν(ΘW (E)) = 0, as required.

Corollary 3.6.8 (Absolute Continuity of µg with Respect to Unstable Foliations). Let
R be a Cantor rectangle with µg(R) > 0. Fix W 0 ∈ Ws(R) and for W ∈ Ws(R), let ΘW

denote the holonomy map from W 0 ∩ R to W ∩ R along unstable manifolds in Wu(R).
Then ΘW is absolutely continuous with respect to the measure µg.

In order to deduce the corollary from the Proposition 3.6.7, we introduce the set M reg,
as in [BD20], of regular points and a countable cover of this set by Cantor rectangles. The
set M reg is defined by

M reg = {x ∈M | d(x, ∂W s(x)) > 0 , d(x, ∂W u(x)) > 0}.

At each x ∈M reg, we can apply [CM06, Prop 7.81] and construct a closed locally maximal
Cantor rectangle Rx containing x, which is the direct product of local stable and unstable
manifolds. Furthermore, by trimming the sides, we may arrange it so that 1

2diams(Rx) 6
diamu(Rx) 6 2 diams(Rx).

Lemma 3.6.9 (Countable Cover of M reg by Cantor Rectangle). There exists a countable
set {xj}j∈N ⊂M reg such that ∪jRxj = M reg and each Rj := Rxj satisfies (3.3.18).
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Proof. This lemma is exactly the content of [BD20, Lemma 7.10].

Let {Rj | j ∈ N} be the family of Cantor rectangles constructed in Lemma 3.6.9,
discarding the ones with zero µg-measure. Then µg(∪jRj) = µg(M reg) = 1, by Corol-
lary 3.6.3(d). In the rest of the paper, we shall work with this countable collection of
rectangles.

Given a Cantor rectangle R, define Ws(R) to be the set of stable manifolds that
completely cross D(R), and similarly for Wu(R).

Proof of Corollary 3.6.8. In order to prove absolute continuity of the unstable foliation
with respect to µg, we will show that the conditional measures µWg of µg are equivalent to
ν on µg-almost every W ∈ Ws(R).

Fix a Cantor rectangle R satisfying (3.3.18) with µg(R) > 0, andW 0 as in the statement
of Corollary 3.6.8. Let E ⊂W 0 ∩R satisfy ν(E) = 0, for the leafwise measure ν.

For any W ∈ Ws(R), we have the holonomy map ΘW : W 0 ∩ R → W ∩ R as in the
proof of Proposition 3.6.7. For ε > 0, we approximate E, choose n and construct a foliation
Γ of the solid rectangle D(R) as before. Define ψε and use the foliation Γ to define ψ̃ε on
D(R). We have ψ̃ε = 1 on Ē = ∪x∈E γ̄x, where γ̄x is the element of Γ containing x. We
extend ψ̃ε to M by setting it equal to 0 on M \D(R).

It follows from the proof of Proposition 3.6.7, in particular (3.6.18), that ψ̃εν ∈ Bw,
and |ψ̃εν|w 6 C ′| log ε|−ς . Now,

ν̃(ν)µg(ψ̃ε) = ν̃(ψ̃εν) = lim
j→∞

1
nj

nj−1∑
k=0

e−kP∗(T,g)(L∗g)k dµSRB(ψ̃εν)

= lim
j→∞

1
nj

nj−1∑
k=0

e−kP∗(T,g)µSRB(Lkg(ψ̃εν)) .

(3.6.19)

For each k, using the disintegration of µSRB as in the proof of Lemma 3.6.6 with the same
notation as there, and (3.6.5), we estimate,

µSRB(Lkg(ψ̃εν)) =
∫

Ξ

∫
Wξ

Lkg(ψ̃εν) ρξ dmWξ
|Wξ|−1 dµ̂SRB(ξ)

6 Cρ

∫
Ξ
|Lkg(ψ̃εν)|w |Wξ|−1 dµ̂SRB(ξ)

6 Cρ e
kP∗(T,g)|ψ̃εν|w 6 CekP∗(T,g)| log ε|−ς ,

where we have used (3.5.1) in the last line, as well as the µ̂SRB-integrability of |Wξ|−1

from [CM06, Exercise 7.22]. Thus µg(ψ̃ε) 6 C| log ε|−ς , for each ε > 0, so that µg(Ē) = 0.
Disintegrating µg into conditional measures µWξ

g on Wξ ∈ Ws and a factor measure
dµ̂g(ξ) on the index set ΞR of stable manifolds in Ws(R), it follows that µWξ

g (Ē) = 0 for
µ̂g-almost every ξ ∈ ΞR. Since E was arbitrary, the conditional measures of µg on Ws(R)
are absolutely continuous with respect to the leafwise measure ν.

To show that in fact µWg is equivalent to ν, suppose now that E ⊂W 0 has ν(E) > 0. For
any ε > 0 such that C ′| log ε|−ς < ν(E)/2, where C ′ is from (3.6.18), choose ψε ∈ C1(W 0)
such that ν(|ψε − 1E |) < ε, where 1E is the indicator function of the set E. As above, we
extend ψε to a function ψ̃ε on D(R) via the foliation Γ, and then to M by setting ψ̃ε = 0
on M \D(R).
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We have ψ̃εν ∈ Bw and by (3.6.17)

ν(ψ̃ε 1W ) > ν(ψε 1W 0)− C ′| log ε|−ς , for all W ∈ Ws(R) . (3.6.20)

Now following (3.6.19) and disintegrating µSRB as usual, we obtain,

µg(ψ̃ε) = lim
n

1
n

n−1∑
k=0

e−kP∗(T,g)
∫

Ξ

∫
Wξ

Lkg(ψ̃εν) ρξ dmWξ
dµ̂SRB(ξ)

= lim
n

1
n

n−1∑
k=0

e−kP∗(T,g)
∫

Ξ

 ∑
Wξ,i∈G

δ1
k

(Wξ)

∫
Wξ,i

ψ̃ε ρξ ◦ T k eSkg ν

 dµ̂SRB(ξ) .
(3.6.21)

To estimate this last expression, we estimate the thermodynamic sum over the curves Wξ,i

which properly cross the rectangle R.
By SSP.2 and the choice of δ1 in (3.3.8), there exists k0, depending only on the minimum

length of W ∈ Ws(R), such that

∑
Wi∈L

δ1
k

(Wξ)

|eSkg|C0(Wi) >
1
3

∑
Wi∈G

δ1
k

(Wξ)

|eSkg|C0(Wi) , for all k > k0.

By choice of our covering {Ri} from Lemma 3.6.9, all Wξ,j ∈ Lδ1k (Wξ) properly cross
one of finitely many Ri. By the topological mixing property of T , there exists n0, depending
only on the length scale δ1, such that some smooth component of T−n0Wξ,j properly crosses
R. Thus, letting Ck(Wξ) denote those Wξ,i ∈ Gδ1k (Wξ) which properly cross R, we have∑

Wi∈Ck+n0 (Wξ)
|eSkg|C0(Wi) >

∑
Wξ,i∈L

δ1
k

(Wξ)

∑
W̃⊂Gδ1n0 (Wξ,i)∩Ck+n0 (Wξ)

en0 inf g|eSkg|C0(Wξ,i)

> en0 inf g ∑
Wξ,i∈L

δ1
k

(Wξ)

|eSkg|C0(Wξ,i)

>
1
3e

n0 inf g ∑
Wξ,i∈G

δ1
k

(Wξ)

|eSkg|C0(Wξ,i) >
1
3c e

n0 inf g ekP∗(T,g) ,

for all k > k0, where c > 0 depends on c0 from Proposition 3.3.7 as well as the minimum
length of W ∈ Ws(R).

Using this lower bound on the sum together with (3.6.20) yields,

µg(ψ̃ε) > 1
3ce
−n0P∗(T,g)(ν(ψε)− C ′| log ε|−ς

)
> C ′′

(
ν(E)− | log ε|−ς

)
.

Taking ε→ 0, we have

µg(Ē) > C ′′ν(E), (3.6.22)

and so µWg (Ē) > 0 for almost every W ∈ Ws(R).

Proposition 3.6.10 (Full Support). We have µg(O) > 0 for any open set O.

Proof. The proof is the same as the one of [BD20, Proposition 7.11], replacing µ∗ by µg.



100 Chapter 3. A family of natural equilibrium measures for Sinai billiard flows

3.6.4 Bernoulli property of µg and Variational Principle

In this section, we use the absolute continuity results on the holonomy map from Sec-
tion 3.6.3 to establish that µg is K-mixing. We also prove an upper bound on the µg-measure
of weighted dynamical Bowen balls. Using these estimates, we are able to prove that µg
is an equilibrium state for T under the potential g – that is, µg realizes the sup in the
definition of P (T, g) – and µg satisfies the variational principle: P∗(T, g) = P (T, g). Finally,
using again the absolute continuity along side with Cantor rectangles and the bound (3.6.6)
on the neighbourhoods of the singular sets, we can bootstrap from the K-mixing to prove
that µg is Bernoulli.

Lemma 3.6.11 (Single Ergodic Component). If R is a Cantor rectangle with µg(R) > 0,
then all the stable manifolds Ws(R) are contained in a single ergodic component of µg.

Proof. Replacing µ∗ by µg, the proof of the analogous result [BD20, Lemma 7.15] can be
applied verbatim. The proof there follows the Hopf strategy.

Proposition 3.6.12. For all (M1
0, αg)-Hölder potential g such that P∗(T, g) − sup g >

s0 log 2 and having SSP.1 and SSP.2, (T, µg) is K-mixing.

Proof. Replacing µ∗ by µg, the proof of the analogous result [BD20, Proposition 7.16] can
be applied verbatim. We outline the steps of the proof.

First, Baladi and Demers show that (Tn, µ∗) is ergodic for all n > 1. To do so, they
use the topological mixing of T to prove that any two Cantor rectangles belong to the
same ergodic component of Tn.

Then, they prove that T is K-mixing. To do so, they construct a measurable partition
out of the stable and unstable manifolds, that is finer than the Pinsker partition π(T ).
Using the covering of M reg by Cantor rectangles {Ri}, and the absolute continuity of the
holonony map, they prove that each Ri belongs to a single component of π(T ). From this,
they deduce that π(T ) contains finitely many elements on which T acts by permutation.
Since π(T ) is T -invariant and (Tn, µ∗) is ergodic for all n > 1, π(T ) must be trivial.

Proposition 3.6.13 (Upper Bounds onWeighted Dynamical Balls). Assume that P∗(T, g)−
sup g > s0 log 2 and that SSP.1 holds. There exists A <∞ such that for all ε > 0 sufficiently
small, x ∈M , and n > 1, the measure µg constructed in (3.6.1) satisfies

µg(e−S
−1
n g
1B−1

n (x,ε)) 6 Ae−nP∗(T,g) ,

where B−1
n (x, ε) is the Bowen ball at x of length n for T−1.

Proof. The inequality follows from the beginning of the proof of [BD20, Proposition 7.12],
where µ∗,L and h∗ should be replaced by respectively µg,Lg and P∗(T, g).

Corollary 3.6.14. For all (M1
0, αg)-Hölder potential g such that P∗(T, g)−sup g > s0 log 2

and having SSP.1 and SSP.2, the measure µg is an equilibrium state of T under the potential
g: we have P∗(T, g) = hµg(T ) +

∫
g dµg.

Proof. For all x ∈ M , let P0
−n(x) denotes the element of P0

−n containing x. By the
Shannon–MacMillan–Breiman theorem, we have

− lim
n→∞

1
n

logµg(P0
−n(x)) = hµg(P, T−1) = hµg(T ) for µg-a.e. x ∈M ,
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where the last equality follows from the Kolmogorov–Sinai theorem (because T is expan-
sive [BD20, Lemma 3.4]). Furthermore, since by Proposition 3.6.12 µg is ergodic, then
1
n log e−S

−1
n g converges to −µg(g) as n goes to infinity. Thus

− lim
n→∞

1
n

log
(
e−S

−1
n g(x)µg(P0

−n(x))
)

= hµg(T ) +
∫
g dµg for µg-a.e. x ∈M . (3.6.23)

Now, by Lemma 3.2.3, there exists a constant C such that for all x ∈ M and all y, z ∈
P0
−n(x), we have |S−1

n g(y)− S−1
n g(z)| 6 C. Thus

e−C 6
µg
(
e−S

−1
n g1P0

−n(x)

)
e−S

−1
n g(x)µg(P0

−n(x))
6 eC ,

and so we can replace e−S
−1
n g(x)µg(P0

−n(x)) in (3.6.23) by µg
(
e−S

−1
n g1P0

−n(x)

)
.

Now, we want to replace P0
−n(x) with a dynamical ball and use Proposition 3.6.13. To

do so, recall that for all ε < ε0, the dynamical ball Bn(x, ε) is included in a single element
ofMn

0 , which is itself included in at most C elements of Pn0 , for some C independent of x.
Thus, using time reversals

− lim inf
n→∞

1
n

logµg
(
e−S

−1
n g
1B−1

n (x,ε)

)
6 hµg(T ) +

∫
g dµg,

On the other hand, for ε small enough, we get by Proposition 3.6.13,

− lim inf
n→∞

1
n

logµg
(
e−S

−1
n g
1B−1

n (x,ε)

)
> P∗(T, g).

Combining these last two inequalities, we get hµg(T ) +
∫
g dµg > P∗(T, g), which ends the

proof.

Proposition 3.6.15. Under the assumptions of Proposition 3.6.12, (T, µg) is Bernoulli.

Proof. The proof follows the arguments in Section 5 and 6 in [CH96], relying on the
notion vwB partition introduced by Ornstein in [Orn70]. Actually, we can apply the same
modifications as in the proof of the analogous result [BD20, Proposition 7.19], replacing µ∗
by µg.

3.6.5 Uniqueness of the equilibrium state

This subsection is devoted to the uniqueness of the equilibrium state µg (Proposition 3.6.18).
The proof relies on exploiting the fact that while the lower bound on weighted Bowen
balls (or thermodynamic sum over elements ofM0

−n) cannot be improved for µg-almost
every x, yet if one fixes n, most elements ofM0

−n (in the sense of thermodynamic sums)
should either have unstable diameter of a fixed length, or have previously been contained
in an element ofM0

−j with this property, for some j < n (Lemma 3.6.16). Such elements
collectively satisfy stronger lower bounds on their measure, when weighted accordingly
(Lemma 3.6.17). Since we have establish good control of the sums overM0

−n andMn
0 in

Section 3.3, we will work with these partitions instead of Bowen balls.
Recalling (3.3.1), choose m1 large enough so that (Km1 + 1)1/m1 < e

1
4 (P∗(T,g)−sup g).

Now, choose δ2 > 0 sufficiently small that for all n, k ∈ N, if A ∈Mk
−n is such that

max{diamu(A), diams(A)} 6 δ2,
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then Ar S±m1 consists of at most Km1 + 1 connected components.
For n > 1, define

B0
−2n := {A ∈M0

−2n | ∀ 0 6 j 6 n/2 ,
T−jA ⊂ E ∈M0

−2n+j such that diamu(E) < δ2},

and its time reversal

B2n
0 := {A ∈M2n

0 | ∀ 0 6 j 6 n/2 ,

T jA ⊂ E ∈M2n−j
0 such that diams(E) < δ2}.

Next, set B2n = {A ∈ M0
−2n | either A ∈ B0

−2n or T−2nA ∈ B2n
0 }. Define G2n =

M0
−2n rB2n.
Our first lemma shows that the thermodynamic sum over elements of B2n is small

relative to the one over elements ofM0
−2n, for large n. Let n1 > 2m1 be chosen so that for

all A ∈M0
−n, diams(A) 6 CΛ−n 6 δ2 for all n > n1.

Lemma 3.6.16. There exists C > 0 such that for all n > n1,∑
A∈B2n

|eS
−1
2n g|C0(A) 6 Ce

3
2nP∗(T,g)e

1
2n sup g(Km1 + 1)

n
m1

+1
6 Ce

7
4nP∗(T,g)+

1
4n sup g .

Notice that since P∗(T, g)− sup g > 0, we have that 7
4P∗(T, g) + 1

4 sup g < 2P∗(T, g).

Proof. Let n > n1 and A ∈ B0
−2n ⊂ M0

−2n. For all 0 6 j 6 bn/2c, call Aj ∈
M0
−d3n/2e−j the unique element containing T−bn/2c+jA. By definition of B0

−2n, we have
that diamu(Aj) 6 δ2, meanwhile diams(Aj) 6 δ2 by choice of n1.

By choice of δ2, we have that A0 is the union of at most Km1 + 1 elements ofMm1
−d3n/2e.

Thus the number of connected components of Tm1A0 is at most Km1 + 1. Notice that
this fact not only applies to A0, but also to Am1 , . . . , Alm1 , Abn/2c, where bn/2c = lm1 + i,
0 6 i < m1. Thus, we get

#{A′ ∈ B0
−2n | T−bn/2cA′ ⊂ A0} 6 (Km1 + 1)l+1 6 (Km1 + 1)

n
m1

+1
.

We are now able to estimate the thermodynamic sum over B0
−2n:∑

A∈B0
−2n

|eS
−1
2n g|C0(A) =

∑
A0∈M0

−d3n/2e

∑
A′∈B0

−2n
T−bn/2cA′⊂A0

|eS
−1
2n g|C0(A′)

=
∑
A0

∑
A′

∣∣∣∣eS−1
d3n/2eg◦T

bn/2c+S−1
bn/2cg

∣∣∣∣
C0(A′)

6
∑
A0

∣∣∣∣eS−1
d3n/2eg

∣∣∣∣
C0(A0)

∑
A′

∣∣∣∣eS−1
bn/2cg

∣∣∣∣
C0(A′)

6 e
1
2n sup g(Km1 + 1)

n
m1

+1∑
A0

∣∣∣∣eS−1
d3n/2eg

∣∣∣∣
C0(A0)

6 Ce
7
4nP∗(T,g)+

1
4n sup g ,

where we used Proposition 3.3.10 for the last inequality.
Now, notice that B2n

0 is the time reversal of B0
−2n, thus∑

A∈B2n
0

|eS2ng|C0(A) 6 Ce
7
4nP∗(T

−1,g)+ 1
2n sup g = Ce

7
4nP∗(T,g)+

1
4n sup g.
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Hence ∑
A∈B2n

0

|eS
−1
2n g|C0(T−2nA) =

∑
A∈B2n

0

|eS2ng|C0(A) 6 Ce
7
4nP∗(T,g)+

1
4n sup g.

Finally, we get ∑
A∈B2n

|eS
−1
2n g|C0(A) 6 2Ce

7
4nP∗(T,g)+

1
4n sup g.

Next, the following lemma establishes the importance of long pieces in providing good
lower bounds on the measure of weighted elements of the partition.

Lemma 3.6.17. There exists Cδ2 > 0 such that for all j > 1 and all A ∈M0
−j such that

diamu(A) > δ2 and diams(T−jA) > δ2, we have

µg(e−S
−1
j g
1A) > Cδ2e

−jP∗(T,g) .

Proof. Let R1, . . . , Rk be Cantor rectangles such that µg(Ri) > 0 for all 1 6 i 6 k, and
such that any unstable or stable curve of length more than δ2 crosses at least one of them.
Note Rδ2 = {R1, . . . , Rk} this family.

Let j > 0 and A ∈ M0
−j such that diamu(A) > δ2 and diams(T−jA) > δ2. By choice

of Rδ2 , A crosses some rectangle Ri and T−jA also crosses some rectangle Ri′ . Note Ξi
the index set for the family of stable manifolds Wξ of Ri. For ξ ∈ Ξi, let Wξ,A := Wξ ∩A.
Since T−jA properly crosses Ri′ in the stable direction, and that T−j is smooth on A, it
follows that T−jWξ,A is a single curve containing a stable manifold of Ri′ .

Let lδ2 denote the length of the smallest stable manifold among the ones in the family
of Cantor rectangles Rδ2 . Thus, for all ξ ∈ Ξi∫

Wξ,A

e−S
−1
j gν = e−jP∗(T,g)

∫
T−jWξ,A

ν > e−jP∗(T,g)C̄l
C̄2(P∗(T,g)−sup g)
δ2

.

Finally, let D(Ri) be the smallest solid rectangle containing Ri. Since µWg and ν are
equivalent on µg-a.e. W ∈ Ŵs, we get for some ξ ∈ Ξi such that ν(A ∩Wξ) > 0

µg(e−S
−1
j g
1A) > µg(e−S

−1
j g
1A∩D(Ri)) > C ′′ν(e−S

−1
j g
1A∩Wξ

) > C ′δ2e
−jP∗(T,g).

where we used (3.6.22) (with Ē = A and E = A ∩WΞ). Since the family Rδ2 is finite, this
proves the lemma.

Proposition 3.6.18. If g is a (M1
0, αg)-Hölder potential with P∗(T, g)− sup g > s0 log 2,

having SSP.1 and SSP.2, then the measure µg is the unique equilibrium state for T under
the potential g.

Proof. Usually, given a known equilibrium state (thus ergodic) µg, in order to prove
uniqueness it suffices to check that for all T -invariant measure µ singular with respect to
µg, we have hµ(T ) + µ(g) < hµg(T ) + µg(g) – see for example [KH95, Section 20.3]. This
is the strategy we adopt.

Let µ be a T -invariant Borel probability measure, singular with respect to µg, that is
there exists a Borel set F ⊂M with T−1F = F and µg(F ) = 0 but µ(F ) = 1.

For each n ∈ N, we consider the partition Qn of maximal connected components
of M on which T−n is continuous. By [BD20, Lemma 3.2 and 3.3], Qn is M0

−n plus
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isolated points whose cardinality grows at most linearly with n. Thus G2n ⊂ Q2n for
each n. Define B̃2n = Q2n rG2n. The set B̃2n contains B2n plus isolated points, and so
its associated thermodynamic sum is bounded by the expression in Lemma 3.6.16 plus
#{isolated points}e2n sup g. Since P∗(T, g)− sup g > 0, we have that 7

4P∗(T, g) + 1
4 sup g >

2 sup g, and thus the contribution of isolated points is small compared to the upperbound
of Lemma 3.6.16.

By uniform hyperbolicity of T , the diameters of the elements of T bn/2cQn tend to zero
as n goes to infinity. This implies the following fact.

Sublemma 3.6.19. For each n > n1, there exists a finite union Cn of elements of Qn
such that

lim
n→+∞

(µ+ µg)(F 4T−bn/2cCn) = 0 .

Proof. The proof is essentially the same as [BD20, Sublemma 7.24] where the role of
µ∗ is played by µg. Since notations are introduced in this proof, we write it down for
completeness and latter use.

Let µ̄ = µ+µg and Q̃n = T−bn/2cQn. For δ > 0, by regularity of Radon measures, pick
compact sets K1 ⊂ F and K2 ⊂M rF such that max{µ̄(F rK1), µ̄((M rF )rK2)} < δ.
Since K1 and K2 are disjoint and compact, we have η = ηδ := d(K1,K2) > 0. If
diam(Q̃) < η/2, then either Q̃ ∩K1 = ∅ or Q̃ ∩K2 = ∅. Let nδ be large enough so that
the diameter of Q̃k is smaller than ηδ/2 for all k > nδ. Fix n = 2nδ and set C̃n to be
the union of Q̃ ∈ Q̃n such that Q̃ ∩K1 6= ∅. By construction, K1 ⊂ C̃n and C̃n ∩K2 = ∅.
Hence µ̄(F 4C̃n) 6 δ+ µ̄(K14C̃n) 6 δ+ µ̄(M r (K1 ∪K2)) 6 3δ. Defining Cn = T bn/2cC̃n
completes the proof.

Remark that since T−1F = F , it follows that (µ+ µg)(Cn4F ) also tends to zero as
n→ +∞.

Since Q2n is generating for T 2n, we have

hµ(T 2n) = hµ(T 2n,Q2n) 6 Hµ(Q2n) = −
∑

Q∈Q2n

µ(Q) logµ(Q) .

Thus,

2nPµ(T, g) = 2nhµ(T ) + 2nµ(g) = hµ(T 2n) + µ(S−1
2n g) 6 Hµ(Q2n) + µ(S−1

2n g)

6
∑

Q∈Q2n

µ(Q)
(
− logµ(Q) + S−1

2n g(xQ) + Cg
)
,

where xQ ∈ Q and Cg is the constant from Lemma 3.2.3.
Now, we want to distinguish elements of Q2n. From the proof of Sublemma 3.6.19,

for each n, there exists a compact set K1(n) that defines C̃n = T−bn/2cCn, and satisfying
(µ+µg)(∪nK1(n)) = (µ+µg)(F ). We group elements Q ∈ Q2n ⊂ Qn according to whether
T−nQ ⊂ C̃n or T−nQ ∩ C̃n = ∅. This dichotomy is well defined because if Q is not an
isolated point, and if T−nQ ∩ C̃n 6= ∅, then T−nQ ∈ Mn

−n is contained in an element of
Mbn/2c−dn/2e that intersect K1(n). Thus Q ⊂ TnC̃n = T dn/2eCn – the case where Q is an
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isolated point is obvious. Therefore,

2nPµ(T, g) 6 Cg +
∑

Q⊂TnC̃n

µ(Q)
(
− logµ(Q) + S−1

2n g(xQ)
)

+
∑

Q∈Q2nrTnC̃n

µ(Q)
(
− logµ(Q) + S−1

2n g(xQ)
)

6 Cg + 2
e

+ µ(TnC̃n) log

 ∑
Q⊂TnC̃n

eS
−1
2n g(xQ)


+ µ(M r TnC̃n) log

 ∑
Q∈Q2nrTnC̃n

eS
−1
2n g(xQ)


where we used in the last line that the convexity of x log x implies that for all pj > 0 with∑N
j=1 pj 6 1, and all aj ∈ R, we have (see [KH95, (20.3.5)])

N∑
j=1

pj(− log pj + aj) 6
1
e

+
N∑
j=1

pj log
N∑
i=1

eai .

Then, since −2nPµg = (µ(TnC̃n) + µ(M r TnC̃n)) log e−2nP∗(T,g), we write for n > n1

2n(Pµ(T, g)− Pµg(T, g))− 2
e
− Cg

6 µ(T−nC̃n) log

 ∑
Q⊂TnC̃n

eS
−1
2n g(xQ)−2nP∗(T,g)


+ µ(M r T−nC̃n) log

 ∑
Q∈Q2nrTnC̃n

eS
−1
2n g(xQ)−2nP∗(T,g)



6 µ(Cn) log

 ∑
Q⊂TnC̃n
Q∈G2n

eS
−1
2n g(xQ)−2nP∗(T,g) +

∑
Q⊂TnC̃n
Q∈B̃2n

eS
−1
2n g(xQ)−2nP∗(T,g)


+ µ(M r C2n) log

 ∑
Q∈G2nrTnC̃n

eS
−1
2n g(xQ)−2nP∗(T,g) +

∑
Q∈B̃2nrTnC̃n

eS
−1
2n g(xQ)−2nP∗(T,g)


(3.6.24)

where we used that Q2n = G2n t B̃2n. By Lemma 3.6.16 (and the remark concerning
the contribution of isolated points), both sums over elements of B̃2n are bounded by
Ce−

1
4n(P∗(T,g)−sup g).
It remains to estimate both sums over elements of G2n. To do so, we want to use

Lemma 3.6.17, that is for eachQ ∈ G2n, we want to assign a set Ē satisfying the assumptions
of the lemma. Let Q ∈ G2n. Thus Q /∈ B0

−2n, and so there exists 0 6 j 6 bn/2c such that
T−jQ ⊂ Ej ∈M0

2n+j with diamu(Ej) > δ2. Also, since T−2nQ /∈ B2n
0 , there exists 0 6 k 6

bn/2c such that T−2n+kQ ⊂ Ẽk ∈M2n−k
0 with diams(Ẽk) > δ2. Thus, both Ẽk ∈M2n−k

0
and T−2n+j+kEj ∈M2n−j−k

−k contain T−2n+kQ. In particular, there exists Ẽ ∈M2n−j−k
0

containing both Ẽk and T−2n+j+kEj . Let Ē = T 2n−j−kẼ ∈ M0
−2n+j+k. Notice that by
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construction Ej ⊂ Ē and Ẽk ⊂ T−2n+j+kĒ, therefore Ē satisfies diamu(Ē) > δ2 and
diams(T−2n+j+kĒ) > δ2, the assumption from Lemma 3.6.17. Thus,

µg(e−S
−1
2n−j−kg1Ē) > Cδ2e

−(2n−j−k)P∗(T,g) .

We call (Ē, j, k) an admissible triple forQ ∈ G2n if 0 6 j, k 6 bn/2c and Ē ∈M0
−2n+j+k,

with T−jQ ⊂ Ē and min{diamu(Ē), diams(T−2n+j+kĒ)} > δ2. By the above construction,
such admissible triples always exist, but there may be many associated to a given Q ∈ G2n.
However, we can define the unique maximal triple for Q by taking first the maximum j,
and then the maximum k over all admissible triples for Q.

Let E2n be the set of maximal triples obtained in this way from elements of G2n. For
(Ē, j, k) ∈ E2n, let AM (Ē, j, k) denote the set of Q ∈ G2n for which the maximal triple is
(Ē, j, k). The importance of the set E2n lies in [BD20, Sublemma 7.25], which we state,
and prove, as follows for completeness.

Sublemma 3.6.20. Suppose that (Ē1, j1, k1), (Ē2, j2, k2) ∈ E2n with j2 > j1 and (Ē1, j1, k1) 6=
(Ē2, j2, k2). Then T−(j2−j1)Ē1 ∩ Ē2 = ∅.

Proof. By contradiction, let (Ē1, j1, k1), (Ē2, j2, k2) ∈ E2n with j2 > j1, (Ē1, j1, k1) 6=
(Ē2, j2, k2) and T−(j2−j1)Ē1 ∩ Ē2 6= ∅. Notice that T−(j2−j1)Ē1 ∈ Mj2−j1

−2n+j2+k1
while

Ē2 ∈M0
−2n+j2+k2

.
Consider first the case k1 6 k2. Therefore T−(j2−j1)Ē1 ⊂ E2. In particular, any element

Q ∈ AM (Ē1, j1, k1) satisfies T−j2Q ⊂ Ē2, and so Q ∈ AM (Ē2, j2, k2), a contradiction.
Consider now the case k1 > k2. Therefore T−(j2−j1)Ē1 and Ē2 are both contained in

an element Ē′ ∈ M0
−2n+j2+k1

. Since Ē2 ⊂ Ē′, we have that diamu(Ē′) > δ2. Also, since
T−2n+j1+k1Ē1 ⊂ T−2n+j2+k1Ē′, we have that diams(T−2n+j2+k1Ē′) > δ2. Note that if
Q ∈ AM (Ē1, j1, k1) ∪ AM (Ē2, j2, k2), then (Ē′, j2, k1) is an admissible triple for Q. Thus,
if j1 = j2, then Ē′ = Ē1. For Q ∈ AM (Ē2, j2, k2), then Q ⊂ Ē1 and so (Ē1, j1, k1) is an
admissible triple for Q, which contradicts the maximality of (Ē2, j2, k2) since k1 > k2.
Similarly, if j2 > j1, then for Q ∈ AM (Ē1, j1, k1), the triple (Ē′, j2, k1) is admissible for Q,
which contradicts the maximality of (Ē1, j1, k1).

We now prove that if TnC̃n ∩ AM (Ē, j, k) 6= ∅, then AM (Ē, j, k) ⊂ TnC̃n and Ē ⊂
Tn−j C̃n. Let Q ∈ AM (Ē, j, k) be such that Q ∩ TnC̃n 6= ∅. Then, by definition of (Ē, j, k),
T−nQ ⊂ T−n+jĒ ∈Mn−j

−n+k. Since 0 6 j, k 6 bn/2c, there exists E′ ∈Mbn/2c−bn/2c such that
T−n+jĒ ⊂ E′. In particular, we have E′ ∈ Q̃n and E′ ∩ C̃n 6= ∅. Thus, by construction
of C̃n, we have C̃n ⊃ E′ ⊃ T−n+jĒ ⊃ T−nQ. In particular, we get Q ⊂ TnC̃n, and thus
AM (Ē, j, k) ⊂ TnC̃n. We also get Ē ⊂ Tn−j C̃n.

On the other hand, we prove that if TnC̃n ∩ AM (Ē, j, k) = ∅, then AM (Ē, j, k) ⊂M r
TnC̃n and T−n+jĒ ⊂M r C̃n. Let Q ∈ AM (Ē, j, k). Then, by assumption, T−nQ∩ C̃n = ∅.
As above, there exists E′ ∈ Mbn/2c−bn/2c containing both T−nQ and T−n+jĒ. In particular,
E′ ∈ Q̃n and E′ ∩ C̃n = ∅. By construction of C̃n, we get that E′ ∈ M r C̃n. Thus
Q ∈M r TnC̃n, and so AM (Ē, j, k) ⊂M r TnC̃n. Also, T−n+jĒ ⊂M r C̃n.

The only last step we have to do before estimating the sums over G2n is to prove that
for each (Ē, j, k) ∈ E2n, we have∑

Q∈AM (Ē,j,k)

|eS
−1
2n g|C0(Q) 6 Ce(j+k)P∗(T,g)|eS

−1
2n−j−kg|C0(Ē) (3.6.25)
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where C > 0 is a constant depending only on the potential g. To do so, notice that if
Q ∈ AM (Ē, j, k), then by construction, T−jQ ⊂ Ē. Thus T−nQ ∈ Mn

−n is a subset of
T−(n−j)Ē ∈ Mn−j

−n+k. Decomposing T−nQ = Q− ∩ Q+ with Q− ∈ M0
−n and Q+ ∈ Mn

0 ,
and T−(n−j)Ē = E− ∩E+ with E− ∈M0

−n+k and E+ ∈Mn−j
0 , we see that Q− ⊂ E− and

Q+ ⊂ E+. Thus

∑
Q∈AM (Ē,j,k)

|eS
−1
2n g|C0(Q) =

∑
Q∈AM (Ē,j,k)

|eS
−1
2n g◦T

n |C0(T−nQ)

6
∑

Q−∈M0
−n

Q−⊂E−

∑
Q+∈Mn

0
Q+⊂E+

|eS
−1
n g+Sng◦T |C0(Q−∩Q+)

6
∑

Q−∈M0
−n

Q−⊂E−

|eS
−1
n g|C0(Q−)

∑
Q+∈Mn

0
Q+⊂E+

|eSng◦T |C0(Q+)

6
∑

Q−∈M0
−n

Q−⊂E−

|eS
−1
n g◦Tn−k |C0(T−n+kQ−)

∑
Q+∈Mn

0
Q+⊂E+

|eSng◦T◦T−(n−j) |C0(Tn−jQ+) .

Now, notice that T−n+kQ− ∈ Mn−k
−k is a subset of T−n+kE− ∈ Mn−k

0 . Thus T−n+kQ−
must be of the form Q̃− ∩ T−n+kE− for some Q̃− ∈M0

−k. Similarly, Tn−jQ+ must be of
the form Q̃+ ∩ Tn−jE+ for some Q̃+ ∈Mj

0. Thus∑
Q∈AM (Ē,j,k)

|eS
−1
2n g|C0(Q)

6
∑

Q̃−∈M0
−k

|eS
−1
n g◦Tn−k |C0(Q̃−∩T−n+kE−)

∑
Q̃+∈Mj

0

|eSng◦T◦T−(n−j) |C0(Q̃+∩Tn−jE+)

6
∑

Q̃−∈M0
−k

|eS
−1
k
g|C0(Q̃−)|e

S−1
2n−j−kg−S

−1
n−jg|C0(Tn−jE−)

∑
Q̃+∈Mj

0

|eSjg◦T |C0(Q̃+)|e
S−1
n−jg|C0(Tn−jE+) .

Now, using Lemma 3.2.3, the supermultiplicativity from Lemma 3.3.9 and the exact
exponential growth from Proposition 3.3.10, we get the upper bound (3.6.25) with C =
2Cg esup g−inf g.

We can now estimate the sums over elements of G2n.∑
Q∈G2n
Q⊂TnC̃n

eS
−1
2n g(xQ)−2nP∗(T,g) 6

∑
(Ē,j,k)∈E2n
Ē⊂Tn−j C̃n

∑
Q∈AM (Ē,j,k)

eS
−1
2n g(xQ)−2nP∗(T,g)

6
∑

(Ē,j,k)∈E2n
Ē⊂Tn−j C̃n

Ce−(2n−j−k)P∗(T,g)|eS
−1
2n−j−kg|C0(Ē)

6
∑

(Ē,j,k)∈E2n
Ē⊂Tn−j C̃n

CC−1
δ2
µg(e−S

−1
2n−j−kg1Ē)|eS

−1
2n−j−kg|C0(Ē)

6 CC−1
δ2
Cg

∑
(Ē,j,k)∈E2n
Ē⊂Tn−j C̃n

µg(Ē) 6 CC−1
δ2
Cg

∑
(Ē,j,k)∈E2n
Ē⊂Tn−j C̃n

µg(T−n+jĒ)

6 C ′ µg(C̃n)
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where C ′ = CC−1
δ2
Cg.

Similarly,∑
Q∈G2nrTnC̃n

eS
−1
2n g(xQ)−2nP∗(T,g) 6

∑
(Ē,j,k)∈E2n

Ē⊂MrTn−j C̃n

∑
Q∈AM (Ē,j,k)

eS
−1
2n g(xQ)−2nP∗(T,g)

6
∑

(Ē,j,k)∈E2n
Ē⊂MrTn−j C̃n

Ce−(2n−j−k)P∗(T,g)|eS
−1
2n−j−kg|C0(Ē)

6
∑

(Ē,j,k)∈E2n
Ē⊂MrTn−j C̃n

CC−1
δ2
µg(e−S

−1
2n−j−kg1Ē)|eS

−1
2n−j−kg|C0(Ē)

6 CC−1
δ2
Cg

∑
(Ē,j,k)∈E2n

Ē⊂MrTn−j C̃n

µg(Ē) 6 CC−1
δ2
Cg

∑
(Ē,j,k)∈E2n

Ē⊂MrTn−j C̃n

µg(T−n+jĒ)

6 C ′ µg(M r C̃n)

Putting these bounds together allows us to complete our estimate of (3.6.24),

2n(Pµ(T, g)− Pµg(T, g))− 2
e
− Cg 6 µ(Cn) log

(
C ′µg(Cn) + Ce−

1
4n(P∗(T,g)−sup g)

)
+ µ(M r Cn) log

(
C ′µg(M r Cn) + Ce−

1
4n(P∗(T,g)−sup g)

)
.

Since by Sublemma 3.6.19 µ(Cn) tends to 1 as n → +∞, while µg(Cn) tends to 0 as
n→ +∞, the limit of the right-hand side tends to −∞. This yields a contradiction unless
Pµ(T, g) < Pµg(T, g).

3.7 The Billiard Flow

Throughout this section, we see the billiard flow φt as the vertical flow in the space

Ω̃ = {(x, t) ∈M ×R | 0 6 t 6 τ(x)}/ ∼,

where the equivalence relation is defined by (x, τ(x)) ∼ (T (x), 0). In other words, we see
φt as the suspension flow over T under the return time τ . Furthermore, transporting the
Euclidean metric on Q× S1 onto Ω̃, the flow φt is uniformly hyperbolic.

Proposition 3.7.1. Let g be a (M1
0, αg)-Hölder potential such that P∗(T, g) − sup g >

s0 log 2, with SSP.1 and SSP.2. Let µ̄g = (µg(τ))−1µg⊗λ, where λ is the Lebesgue measure.
Then (φt, µ̄g) is a K-system.

Proof. The ergodicity of (φt, µ̄g) follows directly from the ergodicity of (T, µg) proved in
Proposition 3.6.12.

To prove the K-mixing, we follow closely the method used in Sections 6.9, 6.10 and
6.11 from [CM06]. In fact, replacing µ and µΩ with µg and µ̄g throughout these sections,
we only have to check that [CM06, Exercise 6.35] is still true in order to apply verbatim
the arguments. This is what we prove here.

To do so, we first need to recall some of the construction done in [CM06, Section 6.9].
If x1 and x3 are two nearby points in M such that

{x2} := W u(x1) ∩W s(x3) 6= ∅ , {x4} := W s(x1) ∩W u(x3) 6= ∅ , (3.7.1)
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we then construct the 4-loop Y1, Y2, Y3, Y4, Y5 ∈ Ω as follow. Let Y1 = X1 = (x1, t) and
X3 = (x3, t). Define

Y2 = W u(Y1) ∩Wws
loc (X3), Y3 = W s(Y2) ∩Wwu

loc (X3),
Y4 = W u(Y3) ∩Wws

loc (X1), Y5 = W s(Y4) ∩Wwu
loc (X1),

where W u and W s are unstable and stable manifolds for the flow, and Wwu
loc and Wws

loc are
local weak unstable and local weak stable manifolds for the flow. We always assume that this
construction stays under the ceiling function τ . Actually, as proven in [CM06, Lemma 6.40]
there exists σ such that Y5 = φσ(Y1), with |σ| = µSRB(K) where K is the rectangle in M
with corners x1, x2, x3, x4. Thus the 4-loops are always open.

For x ∈ M , let Lx = {φt(x) | 0 < t < τ(x)}. Then the partition {Lx | x ∈ M}
of Ω̃ is measurable and the conditional measures of µ̄g on Lx are uniform. Call λx
the Lebesgue probability measure on Lx. Let D ⊂ Ω be such that µ̄g(D) = 1 and let
E1 = {x ∈M | λx(Lx rD) = 0}. Clearly, µg(E1) = 1.

We call a point x1 ∈ E1 rich if for any ε > 0 there exists another point x3 ∈ E1 such
that 0 < d(x1, x3) < ε and (3.7.1) holds with x2 and x4 ∈ E1. Denote E2 ⊂ E1 the set of
rich points.

The analogous of [CM06, Exercise 6.35] is to prove that µg(E2) = 1. Let {Rj}j>1 be
the cover of M reg into Cantor rectangles (discarding the ones with zero µg-measure). Let R
be one of those Cantor rectangle and denote µR the conditional measure of µg on R. It is
enough to prove that µR(E2) = 1. Since µg(E1) = 1 we have that µR(E1) = 1. Furthermore,
since the partition of R into stable manifolds is measurable, we can disintegrate µR with
respect to this partition, with conditional measure µWs on W ∈ R ∩Ws. It follows that for
µR-a.e. point x ∈ E1 ∩R, if W = W (x) ∈ Ws contains x then µWs (W ∩E1) = 1. Similarly,
for µR-a.e. point x ∈ E1 ∩ R, if W = W (x) ∈ Wu contains x then µWu (W ∩ E1) = 1,
where µWu is the conditional measure on W in the disintegration of µR with respect to the
measurable partition R ∩Wu of R. Then µR(ER) = 1, where ER denotes the set of points
x in R such that both stable and unstable conditional measure on leaves containing x give
measure 1 to E1.

Let ER2 ⊂ E2 be the set of rich points x1 such that x3 belongs to R∩E1 (and therefore
x2 and x4 also belong to R∩E1 by the properties of a Cantor rectangle). By contradiction,
assume that µR(ER2 ) 6= 1. Define the sets

CR2 = {x1 ∈ E1 ∩R | ∃ε > 0,∀x3 ∈ E1 ∩R, if 0 < d(x1, x3) < ε then x2 /∈ E1 ∩R},
CR4 = {x1 ∈ E1 ∩R | ∃ε > 0, ∀x3 ∈ E1 ∩R, if 0 < d(x1, x3) < ε then x4 /∈ E1 ∩R}.

Note that we don’t have to introduce in these definitions the condition (3.7.1) since
it is automatically satisfied by the construction of Cantor rectangles. Thus, we have
(E1 ∩ R) r ER2 = CR2 ∪ CR4 , so that µR(CR2 ∪ CR4 ) > 0. Assume first that µR(CR2 ) > 0.
Define the family of sets

CR2,n = {x1 ∈ CR2 | ε > 1
n}.

Since
⋃
n>1C

R
2,n = CR2 is an increasing union, there is some n such that µR(CR2,n) > 0. Let

x1 ∈ CR2,n ∩ ER and W ∈ Wu be such that x1 ∈ W . Let x3 ∈ E1 ∩ R ∩ ER be such that
0 < d(x1, x3) < 1

n . Let W0 ∈ Wu be the unstable manifold containing x3. By construction
of ER, we have µW0

u (W0 ∩ E1) = 1, and since µW0
u have support W0 (otherwise, µg would
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not have total support because of the absolute continuity of the holonomy), in fact we have
that

µW0
u (W0 ∩ E1 ∩B(x1,

1
n)) > 0.

Thus µWu (ΘW (W0 ∩ E1 ∩B(x1,
1
n))) > 0. Now, if x̃3 ∈W0 ∩ E1 ∩B(x1,

1
n), then x̃2 /∈ E1.

In other words, E1 ∩ ΘW (W0 ∩ E1 ∩ B(x1,
1
n)) = ∅. Since x1 ∈ ER, we have that

µWu (W ∩ E1) = 1, so that µWu (ΘW (W0 ∩ E1 ∩ B(x1,
1
n))) = 0, a contradiction. Thus

ER ∩ CR2,n = ∅, so that µR(CR2 ) = 0. We proceed similarly, exchanging the role of Ws and
Wu, in order to prove that µR(CR4 ) = 0. Finally, we get that µR(ER2 ) = 1, the contradiction
closing the proof.

Proposition 3.7.2. Under the assumptions of Proposition 3.7.1, (φt, µ̄g) is Bernoulli.

Proof. The idea of the proof is to bootstrap from the K-mixing following the techniques
of [CH96] with modifications similar to those in [BD20, Proposition 7.19]. The proof
in [CH96] proceeds in two steps.
Step 1. Construction of δ-regular coverings. Given δ > 0, the idea is to cover Ω̃, up to a
set of µ̄g-measure at most δ, by small Cantor boxes – essentially a set of the form Cantor
rectangle times interval – such that µ̄g restricted to each Cantor box is arbitrarily close to a
product measure. The basis of the boxes will be very similar to the covering {Ri}i∈N from
Lemma 3.6.9, however, some adjustments must be made in order to guarantee uniform
properties of the Jacobian of the relevant holonomy map.

Above a Cantor rectangle R with µg(R) > 0, we construct a Cantor box B following
the construction of P-sets from [OW73, Section 3]. Let W s

1 and W s
2 be the stable sides

of the smallest solid rectangle D(R) containing R. Let W be a stable manifold for φt
projecting on W s

1 through the map P− : (x, t) ∈ Ω 7→ x ∈M if t < τ(x), and being such
that W ⊂ Ω̃0 := {(x, t) | 0 < t < τ(x)}. Consider the set WR ⊂ W of points (x, t) ∈ W
such that x ∈ R. Let t0 be small enough so that S =

⋃t0
t=0 φt(WR) ⊂ Ω0. Now, B0 is

obtained by moving S along the unstable manifolds of φt to another surface of that type,
spanned by W s

2 . That is, for each (x, t) ∈ S, take the unstable manifold W (x, t) of φt
passing by (x, t), and projecting on the unstable manifold for T passing by x ∈ R. Let
B0 =

⋃
(x,t)∈SW (x, t) and let B ⊂ B0 be the set of points (x, t) ∈ B0 such that x ∈ R.

Notice that, up to subdividing R into smaller rectangles taking a smaller t0, we can assume
that B ⊂ Ω̃0. Thus, by construction, the set B has the property that for all x, y ∈ B, the
local unstable manifold of x and the local weakly stable manifold of y intersect each other
at a single point which lies in B. This is the crucial property of what Ornstein and Weiss,
in [OW73], called a rectangle.

Since µg(R) > 0, we have µ̄g(B) = t0µg(R) > 0, so that the conditional measure µ̄B
of µ̄g restricted to B makes sense. Now, we want to equip B with a product measure,
absolutely continuous with respect to µ̄B. We proceed as follows. Since the partition of B
into unstable manifolds is measurable, we can disintegrate µ̄B into conditional measures
µ̄Wξ , on Wξ ∩ B with ξ ∈ Zφ, and a factor measure ˆ̄µ on the set Zφ parametrizing the
unstable manifolds of B. Fix a point z ∈ B, and consider B as the product of W u(z) ∩B
with Wws(z) ∩ B, where W u(z) is the local unstable manifold of z and Wws(z) is the
local weak stable manifold of z. Define µ̄pB = µ̄W

u(z) ⊗ ˆ̄µ, and note that we can view ˆ̄µ as
inducing a measure on Wws(z). We still have to prove that µ̄pB � µ̄B.
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Similarly, let µR be the conditional measure of µg restricted to R. Since the partition into
unstable manifolds Wξ, ξ ∈ Z, is measurable, we can disintegrate µR into the conditional
measures µW on W ∩R and a factor measure µ̂ on Z. We want to relate the disintegration
µ̄B with the one of µR. Notice that we can view Zφ as the set Z × [0, t0], where Z
parametrize the set of unstable manifolds of R through the map associating ξφ ∈ Zφ
with the pair (ξ, t) where ξ ∈ Z is such that P−(Wξφ) = Wξ ⊂ D(R) and t is the value
in the definition of S where Wξφ and S intersect. Considering sets A ⊂ B of the form
A = P−(A)× [t−, t+], we get that∫

ξφ∈Zφ
µ̄
Wξφ (A) dˆ̄µ(ξφ) = µ̄B(A) =

∫ t+

t−
µR(P−(A)) dt =

∫ t+

t−

∫
ξ∈Z

µWξ(P−(A)) dµ̂(ξ) dt.

Thus, we can identify µ̄Wξφ with µP−(Wξφ
), and dˆ̄µ with dµ̂dt. From this identifications, we

deduce that the projection map PW,− from someW to P−(W ), and its inverse are absolutely
continuous. The absolute continuity of the holonomy map Θ̄W between unstable manifolds
W0 and W in B thus follows directly from the absolute continuity of the holonomy map
between unstable manifolds in R since Θ̄W = P−1

W,− ◦ θP−(W ) ◦ PW,−. This implies that
µ̄pB is absolutely continuous with respect to µ̄B, and thus, also with respect to µ̄g. The
following definition is taken from [CH96].

Definition 3.7.3. For δ > 0, a δ-regular covering of Ω is a finite collection B of disjoint
Cantor boxes for which 17,

a) µ̄g(
⋃
B∈BB) > 1− δ.

b) Every B ∈ B satisfies
∣∣∣∣ µ̄pB(B)
µ̄g(B) − 1

∣∣∣∣ < δ. Moreover, there exists G ⊂ B, with µ̄g(G) >

(1− δ)µ̄g(B), such that
∣∣∣∣dµ̄pBdµ̄g (x)− 1

∣∣∣∣ < δ for all x ∈ G.

By [CH96, Lemma 5.1], such coverings exist for any δ > 0, and for Cantor boxes
arbitrarily small. The proof essentially uses the covering of M reg from Lemma 3.6.9 to
build Cantor boxes, up to finite subdivision of the covering to ensure a). To get b),
subdivide the boxes into smaller ones on which the Jacobian of the holonomy map between
unstable manifolds is nearly 1. This argument relies on Lusin’s theorem and goes through
in our setting with no changes.
Step 2. Proof that ᾱi is vwb. First, define ᾱi to be the partition of Ω̃ into sets of the
form Ω̃0 ∩ (A× [ l2i ,

l+1
2i )), where A ∈ M1

−1 and l ∈ N. Then ᾱ0 6 ᾱ1 6 ᾱ2 6 . . . is such
that

∨∞
i=1

∨+∞
n=−∞ φnᾱi generates the whole σ-algebra on Ω̃. Using Theorems 4.1 and 4.2

from [CH96], we only need to prove that each partition ᾱi is vwB in order to prove that
(φt, µ̄g) is Bernoulli.

UsingM1
−1 as the basis elements of ᾱi allows us to apply the bounds (3.6.6) directly

since ∂M1
−1 = S1 ∪ S−1. We can now apply the same arguments as in [CH96, Section 6.2]

with the modifications described in the second part of the proof of [BD20, Proposition 7.19].
Actually, the only place where we need to be careful is [BD20, Eq. (7.33)] because of our
additional horizontal cuttings. We finish the proof by dealing with this equation. We first
have to recall some notations from [BD20] first.

17. The corresponding definition in [CH96] has a third condition, but it is satisfied in our setting since
the stable and unstable manifolds are one-dimensional and have bounded curvature.
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Fix some i ∈ N, and let ᾱ = ᾱi. Let ε > 0 and define δ = e−(ε/C′)2/(1−γ) (recalling that
γ > 1), where C ′ > 0 is the constant from (3.7.2) below.

Let B = {B1, B2, . . . , Bk} be a δ-regular cover of Ω̃ such that the diameters of the Bi’s
are less than δ. Define the partition π = {B0, B1, B2, . . . , Bk}, where B0 = Ω r ∪ki=1Bi.
For each i > 1, let Gi ⊂ Bi denote the set identified in Definition 3.7.3(b). Since (φ−1, µ̄g)
is K-mixing, there exists an even number N = 2m, such that for any integers N0, N1 such
that N < N0 < N1, δ-almost every atom A of

∨N1−m
N0−m φ−iᾱ, satisfies∣∣∣∣∣ µ̄g(B|A)

µ̄g(B) − 1
∣∣∣∣∣ < δ, for all B ∈ π,

where µ̄g(·|A) is the measure µ̄g conditioned to A. Now let m, N0, N1 be given as above
and define ω =

∨N1−m
N0−m φ−iᾱ. In order to prove that ᾱ is vwb, we need to give estimates

on elements of ω. To do so, we identify as in [CH96, Section 6.2] sets of bad atoms, whose
union will have measure less than cε. As in [CH96], we call these sets F̂1, F̂2, F̂3, F̂4. Since
the estimates on the µ̄g-measure of the bad sets F̂1 and F̂2 do not change, we skip their
definitions. Now, define F3 to be the set of all points x ∈ ΩrB0 such that W s(x) intersects
the boundary of the element ω(x) before it fully crosses the rectangle π(x). Thus, if x ∈ F3,
there exists a subcurve of W s(x) connecting x to the boundary of (φ−iᾱ)(x) for some
i ∈ [N0−m,N1−m]. Then since π(x) has diameter less than δ, φi(x) lies within a distance
CΛ̃−iδ of the boundary of ᾱ – where C̃1 and Λ̃ > 1 come from the hyperbolicity of the
billiard flow. Using the bound (3.6.6), the total measure of such points must add up to at
most

N1−m∑
i=N0−m

(
C

| log(C̃1Λ̃−iδ)|γ
+ CᾱC̃1Λ̃−iδ)

)
6 C ′1| log δ|1−γ + C ′2δ 6 C ′| log δ|1−γ , (3.7.2)

for some C ′ > 0. Letting F̂3 denote the union of atoms A ∈ ω such that µ̄g(F3|A) >

| log δ|
1−γ

2 , it follows that µ̄g(F3) 6 C ′| log δ|
1−γ

2 . This is at most ε by choice of δ.
The same precaution allows us to get the same bound on µ̄g(F̂4) as in [BD20].
Finally, the bad set to be avoided in the construction of the joining is B0 ∪ (∪4

i=1F̂i).
Its measure is less than cε by choice of δ. From this point, once the measure of the bad set
is controlled, the rest of the proof in Section 6.3 of [CH96] can be repeated verbatim. This
proves that ᾱ is vwB.

Proposition 3.7.4. Under the assumptions of Proposition 3.7.1, the measure µ̄g is flow
adapted 18, that is, log ||Dφt|| is µg-integrable.

Proof. Let Ω = {(x, y, θ) ∈ Q× S1} ⊂ T3 denote the phase space for the billiard flow Φt

with the usual Euclidean metric denoted by dΩ. Let νg be the flow invariant measure
obtained as the image of µ̄g by the conjugacy map between Ω and Ω̃. Let

S−0 = {Φ−t(z) ∈ Ω | z ∈ S0 and t 6 τ(T−1z)}

denote the flow surface obtained by flowing S0 backward until its first collision under the
inverse flow. Similarly, let

S+
0 = {Φt(z) ∈ Ω | z ∈ S0 and t 6 τ(z)}

18. This result is due to Mark Demers. I thank him for allowing me to use his proof.
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denote the forward flow of S0 until its first collision. To show that the measure νt is
flow-adapted, it suffices to show that

∫
Ω | log dΩ(x,S±0 )| dνg(x) <∞. For then this implies

that log ‖DΦt‖ is integrable for each t ∈ [−τmin, τmin] and then by subadditivity for each
t ∈ R.

Let P±(·) denote the projection under the forward (backward) flow of a subset of Ω
until first collision. Let NM

ε (·) denote the ε-neighborhood of a set in M in the Euclidean
metric dM and let NΩ

ε (·) denote the ε-neighborhood of a set in Ω in the metric dΩ. It
follows from [CM06, Exercise 3.15], that there exists C > 0 such that for any ε > 0,

P−(NΩ
ε (S−0 )) ⊂ NM

Cε1/2(S1) and similarly P+(NΩ
ε (S+

0 )) ⊂ NM
Cε1/2(S−1) (3.7.3)

From (3.6.6), there exist Cg > 0 and γ > 1 such that

µg(NM
ε (S±1)) 6 Cg| log ε|−γ for all ε > 0. (3.7.4)

Putting together (3.7.3) and (3.7.4) yields

νg(NΩ
ε (S−0 )) 6 τmaxCg| logCε1/2|−γ ≤ C ′τmax| log ε|−γ . (3.7.5)

For p > 1 to be chosen below, define for n > 1, An = NΩ
e−np

(S−0 ) \NΩ
e−(n+1)p (S−0 ). If

x ∈ An, then | log dΩ(x,S−0 )| 6 (n+ 1)p. Thus we estimate using (3.7.5),∫
Ω
| log dΩ(x,S−0 )| dνg 6 1 + log diam(Ω) +

∑
n≥1

∫
An
| log dΩ(x,S−0 )| dνg

6 1 + log diam(Ω) +
∑
n≥1

(n+ 1)pC ′τmaxn
−γp ,

and the series converges as long as p > 1/(γ − 1). A similar argument shows that
log dΩ(x,S+

0 ) is νg integrable so that νg is flow adapted.

3.A Motivations from uniform hyperbolic dynamics

We start this note by presenting the usual method the existence of measures of maximal
entropy is proved in the case of uniform hyperbolicity. First, we consider a hyperbolic
transformation of a compact set, and then the case of an Anosov flow.

3.A.1 Hyperbolic maps

Let X be a compact Riemannian manifold and let T : X → X be a Cr diffeomorphism.
Assume that T is uniformly hyperbolic, that is

∃λ > 1,∃C > 0,∃Es, Eu ⊂ TX such that
(i)TX = Es ⊕ Eu, DT (Es) ⊂ Es, DT−1(Eu) ⊂ Eu,

(ii) ||DxT
nvs|| 6 Cλ−n||vs||, ∀n > 0, ∀vs ∈ Esx ⊂ TxX,

(iii) ||DxT
−nvu|| 6 Cλ−n||vu||, ∀n > 0, ∀vu ∈ Eux ⊂ TxX.

One fundamental theorem about hyperbolic dynamic is the Hadamard–Perron Theorem
[KH95, Theorem 6.2.8] which states that there exist two unique families of Cr manifolds,
{W+

m}m∈Z and {W−m}m∈Z, everywhere tangent respectively to Es and to Eu, obtained as



114 Chapter 3. A family of natural equilibrium measures for Sinai billiard flows

the graph of some functions, and satisfying some stability and contraction properties. A
key tool in the proof is the construction of families of stable and unstable cones.

As a consequence [KH95, Corollary 6.4.10], all such diffeomorphisms are expansive,
that is

∃δ > 0, ∀x, y ∈ X, [d(Tn(x), Tn(y)) < δ, ∀n ∈ Z⇒ x = y]. (3.A.1)

From the expansive property, it follows from [Wal82, Theorem 8.2] that the metric
entropy µ 7→ hµ(T ) is upper semi-continuous, hence the existence of equilibrium states for
every continuous potential – and in particular existence of measures of maximal entropy
for the zero potential. In the proof of [Wal82, Theorem 8.2], expansiveness is only use
to get the equality hµ(T ) = hµ(T,A) for partition A with diam(A) < δ (the expansivity
constant of T ) and any T -invariant measure µ.

As proved by Bowen [Bow72a, Theorem 3.5], the expansiveness assumption of [Wal82,
Theorem 8.2] can be weakened to entropy-expansiveness (the proof remains unchanged).
This weakening will be relevant in the case of Anosov flows.

3.A.2 Anosov flows

Let X be a compact manifold and φ = {ϕt} : R×X → X be a smooth flow. Assume that
φ is an Anosov flow, that is

∃λ > 1, ∃C > 0,∃Es, Eu, Ec ⊂ TX such that
(i)TX = Ec ⊕ Es ⊕ Eu,

(ii)Dϕt(Es/u) = Es/u, dimEcx = 1, d

dt

∣∣∣∣
t=0

ϕt(x) ∈ Ecx r {0},

(iii) ||Dxϕ
t
|Esx || 6 Cλ−t, ||Dxϕ

−t
|Eux
|| 6 Cλ−t, ∀t > 0.

In [Bow72b, Proposition 1.6], Bowen proves that an Anosov flow is flow expansive (in
the sense of Bowen–Walters), that is – as defined in [BW72] in the case of a fixed-point
free flow,

∀ε > 0, ∃δ > 0, ∀x, y ∈ X, ∀h ∈ C0(R) with h(0) = 0,
[d(ϕt(x), ϕh(t)(y)) < δ, ∀t ∈ R⇒ y ∈ ϕ]−ε,ε[(x)].

(3.A.2)

The key ingredient of the proof is the local product structure for hyperbolic flows. From
(3.A.2), it is easy to see, for h = id, that an Anosov flow satisfies the following weaker
property

∃ε > 0, ∃s > 0, ∀x ∈ X,
Γε(x) := {y ∈ X | ∀t ∈ R, d(ϕt(x), ϕt(y)) < ε} ⊂ ϕ[−s,s](x).

(3.A.3)

Bowen proved [Bow72a, Example 1.6] that (3.A.3) is a sufficient condition so that every
time ϕt of the flow is entropy-expansive. Therefore the map µ ∈ MX(ϕ1) 7→ hµ(ϕ1) is
upper semi-continuous, and so is its restriction to MX(φ) ⊂ MX(ϕ1). Hence, Anosov
flows have equilibrium states for every continuous potential, and in particular for the zero
potential, measures of maximal entropy.
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3.B Obstructions for the Billiard Flow

In the previous section, in both situations, proofs of existence of MME use some sort of
expansiveness. However, the existence of a local product structure is a key ingredient
in order to establish the expansivity property: it gives a scale used as the δ in (3.A.1)
and the ε in (3.A.3). Furthermore, the uniform contraction of stable (resp. unstable)
manifolds for large positive (resp. negative) times is used, and not some estimates of their
lengths in negative (resp. positive) times (such as fragmentation or growth lemmas, see for
example [CM06]).

3.B.1 Entropy expansiveness

In Bowen’s proof, the local product structure is the main tool in order to prove flow
expansiveness. In the case of the billiard flow, their is no such structure. Indeed, stable and
unstable manifolds exist only for Lebesgue-almost every point and there is no deterministic
control of their length (hence no uniform scale for a local structure). One might argue that
a billiard flow admits invariant “cone" fields [BDL18, Section 2] and construct stable and
unstable curves, but then the control on the length of those curves when applying the flow
is in term of expansion, not in term of contraction.

It then seems that h-expansiveness of each time ϕt of the flow is too much to ask
for. Still, one might hope that each ϕt is asymptotically h-expansive, that is h∗(ϕt) :=
lim
ε→0

h∗(ϕt, ε) = 0, where h∗(ϕt, ε) = sup
x∈X

h(ϕt, B(x, ε)). This definition was first introduced

by Misiurewicz in [Mis73] where he proved that the metric entropy of an asymptotic
h-expansive transformation is upper semi-continuous.

The quantity h∗(ϕt) is usually referred to as the topological tail entropy of ϕt [Dow11].
In the context of smooth dynamics, Buzzi [Buz97] has shown that if f ∈ Cr(M), then
h∗(f) 6 dim(M)R(f)

r for some constant R(f). In particular, the metric entropy of a C∞

transformation is upper semi-continuous. Clearly, this result does not apply to billiard
flows.

Proving that the topological tail entropy of the billiard flow is zero is enough to prove
the upper semi-continuity of the metric entropy, hence the existence of some measure of
maximal entropy.

3.B.2 Relations with the Collision Map

In [BW72, Theorem 6], Bowen and Walters prove that the special flow constructed over a
continuous transformation and under a continuous return time function, is flow expansive
if and only if the base map is expansive. Since flow expansiveness is an invariant for flow
under reparametrization, without loss of generality, the return time function can be chosen
constant.

In [BD20], Baladi and Demers show that the collision map is expansive. However, since
the return time is only piecewise continuous, it is not easy to relate the expansivity of
the collision map to flow expansiveness of the billiard flow. As shown in Figure 3.2, two
trajectories can be easily separated by the collision map, but they remain close in the
phase space of the flow. We see that for a δ too large in (3.A.2) (and a natural choice
of h), the two trajectories cannot be distinguished. What could be a good choice for δ?
The main problem being to find a δ independent of trajectories (it is easier to find a δ
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(a) Some common collisions (b) Distinct collisions

Figure 3.2 – Two examples of two periodic trajectories.

for specific trajectories, such as those ones in Figure 3.2, but the inf of those δ over all
trajectories might be 0). If such δ existed, we expect it is controlled in some way by τmin.

For similar reasons, it appears that it is not a simple consequence of the collision
map expansiveness for the flow to satisfy condition (3.A.3) (which is a weaker than flow
expansiveness). For example, the two orbits shown in Figure 3.2 (b) are close in the phase
space of the flow, but far apart in the phase space of the collision map (since the collisions
they make are distinct).



Chapter 4

Measure of maximal entropy for finite horizon Sinai billiard
flows

Abstract

This chapter contains the results of [BCD22]. Using results from Chapter 3 on
equilibrium states for the billiard map, and bootstrapping via a “leapfrogging” method
from [BD22], we construct the unique measure of maximal entropy (MME) for two-
dimensional finite horizon Sinai (dispersive) billiard flows Φ1 (and show it is Bernoulli),
assuming the bound htop(Φ1)τmin > s0 log 2, where s0 ∈ (0, 1) quantifies the recurrence
to singularities. This bound holds in many examples (it is expected to hold generically).

4.1 Introduction and Main Result

First, recall the set-up and some notations: A Sinai billiard table Q on the two-torus
T2 is a set Q = T2 \ ∪iOi, for finitely many pairwise disjoint closed domains Oi with C3

boundaries having strictly positive curvature K. The billiard flow Φt, t ∈ R, is the motion
of a point particle traveling in Q at unit speed and undergoing specular reflections 1 at the
boundary of the scatterers Oi. The associated billiard map T : M →M , on the compact
metric set M = ∂Q × [−π

2 ,
π
2 ], is the first collision map on the boundary of Q. Grazing

collisions cause discontinuities in the map T , but the flow is continuous. However, it is not
obvious that the flow satisfies a condition (such as asymptotic h-expansiveness) sufficient
for the upper-semi continuity of the Kolmogorov entropy (see Chapter 3 Appendices A
and B). There thus does not appear to exist any quick way to prove that the billiard flow
admits a measure of maximal entropy.

To state our main results, Theorem 4.1.4 and 2 Corollary 4.1.5, we introduce some basic

0. Part of this work was done during a workshop at ICMS, Edinburgh in June 2022. The research of VB
and JC is supported by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 787304). MD is partially supported by National
Science Foundation grant DMS 2055070.

1. At a tangential collision, the reflection does not change the direction of the particle.
2. The condition (4.1.4) there is discussed in Lemma 4.1.3.
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notations. Recall that for x ∈M , τ(x) denotes the flow time from x to T (x), and set

τmin = inf τ > 0 , τmax = sup τ , Λ = 1 + 2τmin inf K .

Throughout, we assume finite horizon, that is: there are no trajectories making only
tangential collisions. Finite horizon implies τmax <∞.

The topological entropy htop(Φ1) of the continuous map Φ1 is the supremum of the
Kolmogorov entropies hν(Φ1) of the ergodic Φ1-invariant probability measures. Set

P (t) = sup
µ:T -invariant ergodic probability measure

{hµ(T )− t
∫
τdµ} , t > 0 .

The real number P (t) is called the pressure of the potential −tτ and a probability measure
µt realising P (t) is called an equilibrium measure for −tτ .

Viewing Φ as the suspension of T under τ , Abramov’s formula says that any ergodic
probability measure ν invariant under the time-one map Φ1 satisfies

ν = µ∫
τdµ

⊗ Leb , (4.1.1)

where µ is an ergodic T -invariant probability measure, and, in addition,

hν(Φ1) = hµ(T )∫
τdµ

. (4.1.2)

Using the growth rate ofMn
0 , set

h∗ = lim
n→∞

1
n

log #Mn
0

(existence of the limit is easy [BD20]). Then, for fixed ϕ < π/2 close to π/2 and large
n ∈ N, we can define s0(ϕ, n) ∈ (0, 1] to be the smallest number such that any orbit of
length equal to n has at most s0n collisions whose angles with the normal are larger than
ϕ in absolute value. Now, [BD20] proves that if

h∗ > s0 log 2 (4.1.3)

then P (0) = h∗, and there is a unique equilibrium measure µ∗ = µ0 for t = 0, which is the
unique measure of maximal entropy (MME) of T . There are many billiards [BD20, §2.4]
satisfying (4.1.3), and in fact we do not know any billiard which violates it. (Note also
that Demers and Korepanov showed [DK22] that a conjecture of Bálint and Tóth, if true,
implies that, generically, one can choose ϕ and n to make s0 arbitrarily small.)

Using Abramov’s formula, recall from Chapter 3:

Proposition 4.1.1 (Lemma 3.2.5, Corollary 3.2.6). The real number t = htop(Φ1) > 0
is the unique t such that P (t) = 0. In addition, the set of equilibrium measures of T for
−htop(Φ1)τ is in bijection with the set of MMEs of the flow via (4.1.1).

Denote Snτ :=
∑n−1
k=0 τ ◦ T k. We recall that it follows from Theorems 3.1.2 and 3.2.1

that, in the special case of potentials of the form −tτ
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Theorem 4.1.2 (Theorem 3.1.2, Theorem 3.2.1). (a) The following 3 limits exist:

P∗(t) = lim
n→∞

1
n

logQn(t) , with Qn(t) =
∑

A∈Mn
0

|e−tSnτ |C0(A) , ∀t > 0 .

Moreover, P∗(t) > P∗(s) > P (s) for all 0 6 t < s, and 4 t 7→ P∗(t) is convex.
(b) If t > 0 is such that

P∗(t) + tτmin > s0 log 2 , (4.1.4)

and
log Λ > t(τmax − τmin) , (4.1.5)

then there is a unique equilibrium measure µt for −tτ . This measure charges all open sets,
is Bernoulli, and P∗(t) = P (t). Finally, µt is T -adapted, 5 that is∫

| log d(x,S±1)| dµt <∞ . (4.1.6)

In view of Proposition 4.1.1 and Theorem 4.1.2, to establish existence and uniqueness
of the MME of the finite horizon flow Φ, it suffices to check (4.1.4) and (4.1.5) for
t = htop(Φ1) > 0. We next discuss these conditions. The first one is very mild:

Lemma 4.1.3. The bound (4.1.4) holds at t = htop(Φ1) as soon as

htop(Φ1)τmin > s0 log 2 . (4.1.7)

The bound (4.1.7) holds as soon as

h∗
τmin
τmax

> s0 log 2 . (4.1.8)

If (4.1.4) holds for some t′ > 0 then it holds for all t ∈ [0, t′].

It is not hard to find (see Remark 3.5.6) billiards satisfying (4.1.7).

Proof. The first claim follows from Proposition 4.1.1 and the bound P∗(t) > P (t) for all
t > 0. The second claim holds because (4.1.2) implies htop(Φ1) > h∗∫

τdµ∗
> h∗

τmax
. Finally,

the first claim of Lemma 4.3.3 below implies that t 7→ P∗(t) + tτmin is nonincreasing.

The second condition (4.1.5) will require more efforts. Obviously, for any finite horizon
billiard, there exists t̃ > 0 such that (4.1.5) holds for all t ∈ [0, t̃]. However, we do 6 not know
any billiard such that (4.1.5) holds for t = htop(Φ1) (that is, log Λ > htop(Φ1)(τmax− τmin)).
Fortunately, it turns out that (4.1.5) is not necessary: Assuming only finite horizon and
(4.1.4) at t = htop(Φ1), we will extend the conclusion of Theorem 4.1.2 to t = htop(Φ1)
by adapting the bootstrapping argument in [BD22, Lemma 3.10] (used there to cross the
value x = 1 at which the pressure for −x log JuT vanishes). This is our main result:

3. By [BD20] we always have P∗(0) = h∗ > P (0).
4. The fact that P∗(t) is strictly decreasing is immediate, see (4.3.5). Convexity follows from the Hölder

inequality as in [BD22, Prop 2.6].
5. To establish (4.1.6), Carrand shows that the µt measure of the ε-neighbourhood of S±1 is bounded

by Ct| log ε|γ for γ > 1 and Ct <∞.
6. Note that (4.1.2) implies htop(Φ1)(τmax − τmin) 6 h∗(τmax/τmin − 1).
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Theorem 4.1.4. Let T be a finite horizon Sinai billiard map such that (4.1.4) holds at
t = htop(Φ1). Then for all t ∈ [0, htop(Φ1)], we have P∗(t) = P (t), and there exists a unique
T -invariant probability measure µt realising P (t). This measure charges all nonempty open
sets, is Bernoulli and T -adapted.

Our proof furnishes t∞ > htop(Φ1) such that the key Small Singular Pressure properties
(see Definitions 3.3.2 and 3.3.5) hold for g = −tτ for all t ∈ [0, t∞]. If t∞ > htop(Φ1) and if
(4.1.4) holds for some t2 ∈ (htop(Φ1), t∞], then the conclusion of Theorem 4.1.4 holds for
all t ∈ [0, t2].

Theorem 4.1.2 and Proposition 4.1.1, combined with Theorem 4.1.4 and the proof of
Propositions 3.7.1 and 3.7.2 for Bernoullicity of the flow, give:

Corollary 4.1.5. Let T be a finite horizon Sinai billiard map such that (4.1.4) holds at
t = htop(Φ1). Then

ν∗ :=
µhtop(Φ1)∫
τ dµhtop(Φ1)

⊗ Leb

is the unique measure of maximal entropy of the billiard flow. This measure is Bernoulli,
it charges all nonempty open sets, and it is flow adapted, that is 7∫

Ω
| log dΩ(x,S±0 )| dν∗ <∞ , Ω = Q× S1 , (4.1.9)

where dΩ is the Euclidean metric, S−0 = {Φ−s(z) : z ∈ S0 , s 6 τ(T−1z)}, and S+
0 =

{Φs(z) : z ∈ S0 , s 6 τ(z)}.

Contrary to [BD22], homogeneity layers are not used for our potentials −tτ . They
are not needed because τ is piecewise Hölder and thus eτ satisfies piecewise bounded
distortion. The results from Chapter 3 that we build upon are based on bounds for transfer
operators acting on Banach spaces of distributions defined with the logarithmic modulus
of continuity of [BD20]. We could not find a Banach norm giving a spectral gap (there is
no analogue of [BD22, Lemmas 3.3 and 3.4] for ς 6= 0, see Lemma 3.3.1 for γ 6= 0 where
(log |W |/ log |Wi|)γ replaces (|Wi|/|W |)ς). We thus do not have exponential mixing for
(T, µhtop(Φ1)). (Even if we had, it would not immediately imply exponential mixing for
(Φ1, ν∗).)

This chapter is organised as follows: Section 4.2 is devoted to recalling notation
from [BD20] and to two basic lemmas on cone stable curves iterated by the billiard map.
Section 4.3 is the core of the paper: In §4.3.1, after recalling in the present context the
Small Singular Pressure (SSP) conditions (4.3.1), (4.3.2), and (4.3.3) and the main result of
Chapter 3 (Theorem 4.3.1), we reduce Theorem 4.1.4 to showing SSP for some t > htop(Φ1)
(Lemma 4.3.2). Then we set up the bootstrap mechanism, by introducing in (4.3.4) the
supremum t∞ > 0 of parameters satisfying SSP (this is the new idea). Lemma 4.3.3
embodies our version of the first ingredient of the bootstrap from [BD22, Definition 3.9]
(“pressure gap”), constructing a “pivot” t∗ < t∞ and its associated parameter s∗(t∗) > t∞.
The key lemmas inspired by the second ingredient of bootstrapping [BD22, Lemmas 3.10–
3.11] (“leapfrogging across t∗ via the Hölder inequality”), are stated and proved in §4.3.2.
Finally, Lemma 4.3.2 (and thus Theorem 4.1.4) is proved in §4.3.3: We assume for a

7. Note that (4.1.9) implies that log ‖DΦt‖ is integrable for each t ∈ [−τmin, τmin] so that, by subaddi-
tivity, it is integrable for each t ∈ R.
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contradiction that t∞ < htop(Φ1). Since t∗ < t∞, this implies, by results from Chapter 3
recalled in Proposition 4.1.1 and Theorem 4.1.2(a), that the pressure of t∗ is positive. Then,
we exploit this positivity in order to pass over the pivot t∗ via the key lemmas from §4.3.2,
obtaining the desired contradiction.

Observe that the results contained in Chapter 3 apply to families more general than
gt = −tτ , the results of the present chapter extend to suitable one parameter-families gt of
piecewise Hölder potentials. We abstain from spelling out the details.

4.2 Notations. n-step Expansion. Growth Lemma

We recall here some facts about hyperbolicity and complexity of finite horizon Sinai billiards.
There exist continuous families of stable and unstable cones, Cs and Cu, which can be taken
constant in M , and a constant C1 ∈ (0, 1) such that,

‖DTn(x)v‖ > C1Λn‖v‖ , ∀v ∈ Cu , ‖DT−n(x)v‖ > C1Λn‖v‖ , ∀v ∈ Cs , (4.2.1)

where, as before, Λ = 1 + 2τminKmin is the minimum hyperbolicity constant.
A fundamental fact about this class of billiards is the linear bound on the growth in

complexity due to Bunimovich [Che01, Lemma 5.2],

There exists K > 1 such that for all n > 0, the number of curves in S±n
that intersect at a single point is at most Kn.

(4.2.2)

The parameter γ > 1 defining the Banach space norms in Section 3.4.2 is chosen so
that h∗ > s0γ log 2, which is possible due to (4.1.3). Next, choosing m so large that,

1
m log(Km+ 1) < h∗ − s0γ log 2 ,

we take δ0 = δ0(m) ∈ (0, 1/C1) so that any stable curve of length at most δ0 can be cut by
S−` into at most K`+ 1 connected components for all 0 6 ` 6 2m.

Let Ŵs be, as in [BD20, §5], the set of (cone-stable) curves whose tangent vectors
lie in the stable cone for T , with length at most δ0 and curvature bounded above by a
constant CK depending only on the table (homogeneity layers are not used). The constant
CK is chosen large enough that T−1Ŵs ⊂ Ŵs, up to subdivision of curves. For n > 1,
δ ∈ (0, δ0], and W ∈ Ŵs, let Gδn(W ), Lδn(W ), Sδn(W ), and Iδn(W ) be as in [BD20, §5]: Set
Gδ0(W ) = W and define Gδn(W ) for n > 1 to be the set of smooth components of T−1W ′ for
W ′ ∈ Gδn−1(W ), with elements longer than δ subdivided to have length between δ/2 and δ.
More precisely, if a smooth component U has length `δ + ρ with ` > 1 and 0 6 ρ < δ, we
decompose U into:

• either ` > 2 pieces of length δ, if ρ = 0,

• or ` > 1 piece(s) of length δ and one piece of length ρ, placed at one of the edges of
U , if ρ ≥ δ/2,

• or `− 1 > 0 piece(s) of length δ, one piece of length δ/2 (at one tip) and one piece of
length ρ+ δ/2 (at the other tip), if ρ ∈ (0, δ/2).
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Let Lδn(W ) denote the set of curves in Gδn(W ) that have length at least δ/3 and let
Sδn(W ) = Gδn(W ) \ Lδn(W ). For 0 6 k < n, we say that U ∈ Gδk(W ) is an ancestor of
V ∈ Gδn(W ) if Tn−kV ⊆ U , and we define Iδn(W ) to be those curves in Gδn(W ) that have
no ancestors of length at least δ/3 (aside from perhaps W itself).

Finally, let δ1 < δ0 and n1 > m be chosen so that [BD20, eq. (5.6)] holds: For any
stable curve W with |W | > δ1/3 and n > n1,

#Lδ1n (W ) > 2
3#Gδ1n (W ) .

Up to replacing δ1 by a smaller constant, we may and shall only consider values of δ of
the form δ0/2N for N > 0. By induction on N , selecting the short tips in a compatible
way when dividing δ by two, we require that 8 for all W ∈ Ŵs,

∀n > 1 , if δ′′ < δ′ then ∀U ′′ ∈ Lδ′′n (W ) , ∃!U ′ ∈ Gδ′n (W ) with U ′′ ⊂ U ′ , (4.2.3)

For t > 0, we introduce the following shorthand notation,

Sδn(W, t) :=
∑

Wi∈Sδn(W )
|e−tSnτ |C0(Wi) , G

δ
n(W, t) :=

∑
Wi∈Gδn(W )

|e−tSnτ |C0(Wi) ,

and
Lδn(W, t) := Gδn(W, t) r Sδn(W, t) , Iδn(W, t) :=

∑
Wi∈Iδn(W )

|e−tSnτ |C0(Wi) .

The lemma below replaces the usual one-step expansion (see [BD22, Lemma 3.1]):

Lemma 4.2.1 (n-Step Expansion). For any t0 > 0 and θ0 ∈ (e−τmin , e−τmin/2) there exist
a finite n0(t0, θ0) > 2 and δ̄0 = δ0

2N > 0 such that

S δ̄0n0(W, t) 6 Gδ0n0(W, t) < θn0t
0 , ∀W ∈ Ŵs with |W | 6 δ̄0 , ∀t > t0 . (4.2.4)

See also Lemma 3.3.1(a).

Proof. Clearly, sup−tτ 6 −tτmin < 0 if t > 0. For any n0 > 1, there exists δ̄0(n0) = δ0
2N

such that any W ∈ Ŵs with |W | < δ̄0 is such that T−n0(W ) has at most (Kn0 + 1)
connected components [Che01, Lemma 5.2]. In addition using [CM06, Ex. 4.50] as
in [BD20, Proof of Lemma 5.1], we have |T−jW | 6 C ′|W |2−s0j for a uniform C ′ > 0 and
all j > 1 (see also Lemma 3.3.1). Up to taking smaller δ̄0, depending on δ0 (and n0), we
can assume that |T−jW | 6 δ0 for all 0 6 j 6 n0. Then, for |W | 6 δ̄0, there can be no
additional subdivisions of T−n0(W ) due to pieces growing longer than δ0, so that

Gδ0n0(W, t) 6 (Kn0 + 1)e−tn0τmin . (4.2.5)

The same bound applies to S δ̄0n0(W, t), since any element of S δ̄0n0(W ) must be created by a
genuine cut by a singularity, not an additional subdivision due to pieces growing longer
than δ̄0. For any fixed t0 > 0 and θ0 ∈ (e−τmin , e−τmin/2), we can find n0 = n0(t0, θ0) > 2
such that (Kn0 + 1)1/n0 6 θt00 e

τmint0 . Since θt00 eτmint0 6 θt0e
τmint for all t > t0, it follows

that (4.2.4) holds for δ̄0 = δ̄0(n0, δ0).

8. We use this in the proof of Lemma 4.3.7 below. An alternative way to guarantee (4.2.3) for a fixed
length scale δ′ is to define Gδ

′
n (W ) as usual and treat it as the canonical partition of T−nW . Then for any

δ′′ < δ′/2 one can define Gδ
′′
n (W ) as a refinement of Gδ

′
n (W ), guaranteeing (4.2.3). This is done implicitly

in the proof of [BD22, Lemma 3.11] and could be applied in our Lemma 4.3.7 below by taking δ′ = δt∗ of
that lemma. We do not adopt this approach since the canonical scale would not be chosen until nearly the
end of our proof.
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Lemma 4.2.1 implies the following analogue 9 of [BD22, Lemmas 3.3–3.4, ζ = 0]:

Lemma 4.2.2 (Growth Lemma). Fix θ0 ∈ (e−τmin , e−τmin/2) and t0 > 0. Suppose δ 6 δ0
and m1(δ) > n0(t0, θ0) are such that any W ∈ Ŵs with |W | 6 δ has the property that
W \ S−j comprises at most Kj + 1 connected components for all 1 6 j 6 2m1. Then for
any t > t0 and each W ∈ Ŵs with |W | 6 δ, we have

Iδn(W, t) 6 θnt0 , ∀n > m1 , (4.2.6)

Iδn(W, t) 6 Km1θ
nt
0 , ∀n < m1 , (4.2.7)

and
Gδn(W, t) 6 4

C1δ
Qn(t) ,∀n > 1 . (4.2.8)

Proof. Let n0(t0, θ0) and δ̄0(n0, δ0) be given by Lemma 4.2.1. By choice of n0, if ε =
τmin + log θ0 > 0, then (Kn0 + 1)1/n0 6 eεt0 . Remark that (Kn+ 1)1/n decreases to 1 for
n > 2 since K ≥ 1. Thus (Kn+ 1)1/n 6 eεt0 for all n > n0. With this observation, for δ
and m1 as in the statement of the lemma, the bound (4.2.6) can be proved by induction on
n (just like [BD22, Lemma 3.3] for ζ = 0), writing n = qm1 + `, with q > 1 and 0 6 ` < m1,
using q − 1 times the bound (4.2.5) with m1 iterates in place of n0, and using it one last
time with m1 + ` iterates, since elements of Iδn(W ) have been short at each intermediate
step.

For n < m1, the bound (4.2.7) follows from the relation between δ and m1.
Finally, to show (4.2.8), first note that, since each Wi ∈ Gδn(W ) is contained in a single

element of Mn
0 , and since |T−nV | > C1Λn|V | for any stable curve |V | (due to (4.2.1)),

there can be at most 2/(C1δ) + 2 elements of Gδn(W ) in one element ofMn
0 . Note also that

|e−tSnτ |C0(Wi) 6 |e−tSnτ |C0(A) whenever Wi ⊂ A ∈ Mn
0 . This gives the required bound

since C1δ < 1.

4.3 Bootstrapping

4.3.1 Preparations: Small Singular Pressure. Two Bounds from Chap-
ter 3

Recall the SSP.1 condition in the context of the family of potentials −tτ : We say that
Small Singular Pressure #1 (SSP.1) holds at t > 0 for ε ∈ (0, 1/4] if

there exist δt = δ(ε) = δ0
2Nt ∈ (0, δ1] and a finite nt = nt(ε) > n1 (4.3.1)

such that Sδtn (W, t)
Gδtn (W, t)

6 ε , ∀n > nt , ∀W ∈ Ŵs with |W | > δt/3 ,

and, in addition,

∑
n>nt

sup
W∈Ŵs

|W |>δt/3

e−ntτmin

Lδtn (W, t)
<∞ (4.3.2)

9. See Lemma 3.3.1(b) for the replacement for [BD22, Lemmas 3.3–3.4, ζ 6= 0], using a logarithmic
weight with γ > 0 as in [BD20].
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together with its “time-reversal," obtained by replacing T with its inverse T−1, Ŵs by Ŵu,
and replacing τ with τ ◦ T−1 (that is, replacing Snτ with

∑n
i=1 τ ◦ T−i = (Snτ) ◦ T−n),

both hold.
Now, recall the SSP.2 condition in the context of the family of potentials −tτ : Assume

that (4.3.1) and (4.3.2) hold at t > 0 for ε 6 1/4, δt, and nt. Then we say that Small
Singular Pressure #2 (SSP.2) holds at t for ε if 10

for any W ∈ Ŵs there exists n∗t (|W |, δt, ε) ∈ [nt,∞) such that (4.3.3)
Sδtn (W, t)
Gδtn (W, t)

6 2ε , ∀n > n∗t (|W |, δt, ε) ,

together with its time-reversal (in the sense defined above) both hold.

Note that the time-reversal of conditions (4.3.1), (4.3.2), and (4.3.3) involve stable
curves for T−1, that is, unstable curves for T . In view of the time reversibility of the billiard
dynamics (see [CM06, Sect. 2.14] for the precise involution ι), since τ ◦ T−1 = τ ◦ ι, and
τ ◦ ι is precisely the free flight time under T−1,the conditions for T and τ are equivalent 11

with those for T−1 = ιT ι and τ ◦ T−1 = τ ◦ ι.

To establish Theorem 4.1.2, recall that Theorem 3.1.2 is 12 a consequence of SSP:

Proposition 4.3.1 (Theorem 3.1.2). Assume 13 (4.1.4) and that SSP.1 and SSP.2 hold 14

at t > 0 for ε = 1/4. Then there is a unique equilibrium measure µt for −tτ , this measure
is T -adapted, charges nonempty open sets, and is Bernoulli. In addition, P∗(t) = P (t).

Therefore, to show Theorem 4.1.4 it suffices to prove the following lemma:

Lemma 4.3.2. There exists t2 > htop(Φ1) such that (4.3.1), (4.3.2), and (4.3.3) hold at
all t ∈ [0, t2] for ε = 1/4.

Setting
tC = log Λ

τmax − τmin
> 0 ,

Lemmas 3.3.3, 3.3.4 and Corollary 3.3.6 give that, for any fixed ε ∈ (0, 1/4], each t ∈ [0, tC ]
satisfies SSP (that is, (4.3.1), (4.3.2), and (4.3.3)) for δt(ε) > 0, nt(ε) <∞, and Ct <∞.

The starting point of our bootstrap argument is the following definition

t∞ := sup{t′ > 0 such that (4.3.1), (4.3.2), and (4.3.3) hold for all 0 6 t 6 t′} . (4.3.4)

We already know that t∞ > tC > 0. If P (t∞) < 0, then t∞ > htop(Φ1), and we have shown
Lemma 4.3.2. Otherwise, Lemma 4.3.7 below will establish that any 0 6 t < s∗ satisfies
SSP.1 and SSP.2 (that is, (4.3.1), (4.3.2), and (4.3.3)) where s∗ > t∞ is constructed in the
next lemma (inspired by [BD22, Definition 3.9]).

10. In the analogous condition of [BD20, Cor 5.3], there exists a uniform Ct such that n∗t (|W |, δt, ε) =
Ctnt

| log(|W |/δt)|
| log ε| .

11. This equivalence does not always hold in Chapter 3 where −tτ is replaced by a more general g.
12. In particular, it is shown that (4.3.1) and (4.3.2) imply the analogues Propositions 3.3.7 and 3.3.10

of [BD22, Prop. 3.14 and 3.15] for the Banach norm of [BD20]. He does not get a spectral gap.
13. See also Lemma 4.1.3.
14. SSP.1 suffices to construct the invariant measure µt and check it is T -adapted. SSP.2 is used to show

ergodicity, which gives that µt is an equilibrium state for −tτ , as well as the other claims.
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Lemma 4.3.3 (Pressure gap: Constructing the “pivot” t∗). For all t > 0, the following
limit exists and belongs to [−τmax,−τmin]:

P ′−(t) := lim
s↑t

P∗(t)− P∗(s)
t− s

.

In addition, for any θ0 ∈ (e−τmin , e−τmin/2), defining

s∗(t) :=
t|P ′−(t)|

|P ′−(t)|+ (log θ0)/2 , t ∈ (0, t∞) ,

there exists t∗ ∈ (0, t∞) such that s∗ := s∗(t∗) > t∞.

Remark 4.3.4. The parameter s∗(t) > t is defined so that

θ
s∗(t)/2
0 e|P

′
−(t)|(s∗(t)−t) = 1 .

The reason for this will become clear in the proof of Lemma 4.3.7.

Proof. Existence of the limit follows from the convexity of P∗(t) which implies that left
(and right) derivatives exist at every t > 0. Next, if 0 < s < t, we have∑

A∈Mn
0

|e−tSnτ |C0(A) 6 |en(s−t)τmin |
∑

A∈Mn
0

|e−sSnτ |C0(A) , ∀n > 1 , (4.3.5)

which implies P ′−(t) 6 −τmin. A similar computation gives P ′−(t) > −τmax.
Next, to construct t∗, we first check that

s∗(t) > t ·
(
1 + τmin

4τmax

)
, ∀t ∈ (0, t∞) . (4.3.6)

Indeed, since
1

1− | log θ0|
2|P ′−(t)|

> 1 + | log θ0|
2|P ′−(t)| ,

the bound (4.3.6) follows from Remark 4.3.4 and the fact that |P ′−(t)| 6 τmax implies

| log θ0|
2|P ′−(t)| ∈

[ τmin
4τmax

, 1
)
.

Then, taking t∗ = t∞ − υ for υ ∈ (0, t∞), it suffices to pick υ > 0 such that(
1 + τmin

4τmax

)(
t∞ − υ

)
> t∞ .

Since t∞ > tC = log Λ/(τmax − τmin), the above bound holds as soon as

υ < log Λ · (τmax − τmin)−1 ·
(
1 + 4τmax

τmin

)−1
.

We record for further use two key bounds due to Carrand. Assume that (4.3.1) (4.3.2)
hold for t, then by Proposition 3.3.7 there exists c0,t > 0 such that

Gδtn (W, t) > c0,te
nP∗(t) , ∀n > 1 , ∀W ∈ Ŵs with |W | > δt/3 , (4.3.7)
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and by Proposition 3.3.10 there exists c1,t > 0 such that

Qn(t) 6 2
c1,t

enP∗(t) , ∀n > 1 , (4.3.8)

Observe that (4.3.8) together with (4.2.8) give the upper bound

Gδn(W, t) 6 4
C1δ

Qn(t) 6 8
C1δc1,t

enP∗(t) , ∀n > 1 , ∀δ 6 δ0 . (4.3.9)

Finally, (4.3.1) and (4.3.7) imply the following lower bound for any scale δ = δ0/2N .

Lemma 4.3.5. For all t ∈ (0, t∞) and δ = δ0/2N , there exists c0,t(δ) > 0 such that

Gδn(W, t) > c0,t(δ)enP∗(t) , ∀n > 1 , ∀W ∈ Ŵs with |W | > δ/3 . (4.3.10)

The time reversal of the statement holds for T−1.

Proof. First, assume δ < δt. Each element of Lδtn (W ) contains at least δt/(3δ) elements of
Gδn(W ). So if |W | > δt/3, then (4.3.1) and bounded distortion for τ give

Gδn(W, t) > e−tCδt
3δ Lδtn (W, t) > e−tCδt

4δ Gδtn (W, t) > e−tCδtc0,t
4δ enP∗(t) , (4.3.11)

for all n > nt, where we have used (4.3.7) in the last step.
Next, if |W | ∈ [δ/3, δt/3), then there exists nW 6 C ′ log(δt/δ) such that T−nW (W ) has a

connected component V of length at least δt/3. This is because while T−nW remains short,
the number of components of T−nW is at most Kn+1 by (4.2.2) while |T−nW | > C1Λn|W |
according to (4.2.1). Thus setting n̄ = max{nW , nt}, we apply (4.3.11) to V to estimate
for n > n̄.

Gδn(W, t) > Gδn−n̄(V, t)e−n̄τmax > e−n̄(τmax+P∗(t))e−tC
δt
4δ c0,te

nP∗(t) ,

which proves (4.3.10) by definition of n̄. If n < n̄, then trivially

Gδn(W, t) > e−nτmax > e−n̄(τmax+P∗(t))enP∗(t) .

Finally, if δ > δt, then since each element of Gδn(W ) contains at most 3δ/δt elements of
Lδtn (W ) and Sδtn (W ) ⊂ Sδn(W ), we have

Gδtn (W, t) = Sδtn (W, t) + Lδtn (W, t) 6 Sδn(W, t) + 3δ
δt
Gδn(W, t) 6

(
1 + 3δ

δt

)
Gδn(W, t) ,

which gives the required lower bound on Gδn(W, t), applying (4.3.7).
The time reversed statement of the lemma follows immediately using the reversibility

of the billiard, as explained earlier.

4.3.2 Key Lemmas

In view of Lemma 4.3.7 below, we adapt [BD22, Lemma 3.10]:
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Lemma 4.3.6 (Leapfrogging via the Hölder Inequality). For all 15 t > t∗ and κ > 0 there
exists ωκ = ωκ(t∗, t) > 0 such that for all W ∈ Ŵs with |W | > δt∗/3,

Gδn(W, t) > ωκ(t∗, t)
δ

·en(P∗(t∗)−(|P ′−(t∗)|+κ)(t−t∗)) , (4.3.12)

∀δ = δ0
2N 6 δt∗ , ∀n > nt∗ .

In addition, for each δ = δ0
2N < δ0 there exists ω∗κ = ω∗κ(t∗, t, δ) > 0 such that for all

W ∈ Ŵs with |W | > δ/3,

Gδn(W, t) > ω∗κ(t∗, t, δ) · en(P∗(t∗)−(|P ′−(t∗)|+κ)(t−t∗)) , ∀n > 1 . (4.3.13)

Finally, the time reversals of (4.3.12) and (4.3.13) also hold for the billiard map T−1.

The proof gives constants ωκ(t∗, t) and ω∗κ(t∗, t, δ) which tend to zero as t→∞ (because
the constant η in the proof tends to zero as t→∞).

Proof. We start with (4.3.12) (for t > t∗). Recall from the proof of (4.3.11) that for
u ∈ (0, t∞) and δ < δu, if |W | > δu/3 and n > nu, then

Gδn(W,u) > e−uC
δu
4δ c0,ue

nP∗(u) , ∀δ < δu , (4.3.14)

since each Vi ∈ Lδun (W ) contains at least δu/3δ elements of Gδn(W ).
Now, for s ∈ (0, t∗), taking η(s, t, t∗) ∈ (0, 1] such that ηt+ (1− η)s = t∗, the Hölder

inequality gives
∑
i a
t∗
i 6

(∑
i a
t
i

)η(∑
i a
s
i

)1−η for any positive numbers ai. It follows that
for all δ6 δt∗ , each W ∈ Ŵs with |W | > δt∗/3 and any n > nt∗ ,

Gδn(W, t) > (Gδn(W, t∗))1/η

(Gδn(W, s))(1−η)/η

>
(
e−t∗C

δt∗
4δ c0,t∗e

nP∗(t∗)
)1/η( 8

C1δc1,s
enP∗(s)

)1−1/η

= 1
δ

(
e−t∗C

δt∗
4 c0,t∗

)1/η( 8
C1c1,s

)1−1/η

e
n(P∗(t∗)−P∗(s)) 1−η

η enP∗(t∗) , (4.3.15)

where we used (4.3.14) with u = t∗ for the lower bound in the numerator, and (4.3.9) for s
for the upper bound in the denominator, recalling that {s, t∗} ⊂ (0, t∞) and δt∗ 6 δ1 < δ0.

Since η(s, t, t∗) = (t∗ − s)/(t− s), we have

(P∗(t∗)− P∗(s))
1− η
η

= t− t∗
t∗ − s

(P∗(t∗)− P∗(s)) .

Fix κ > 0 and choose s = s(κ, t∗) ∈ (0, 1) close enough to t∗ (i.e. small enough
ηκ = η(s(κ, t∗), t, t∗) > 0) such that (recalling 0 < s < t∗ and P ′−(u) < 0 for all u > 0)

(P∗(s)− P∗(t∗))/(t∗ − s) 6 |P ′−(t∗)|+ κ . (4.3.16)

The bound (4.3.12) follows, setting, for s = s(κ, t∗) (recall that ηκ depends on t),

ωκ(t∗, t) =
(
e−t∗C

δt∗
4 c0,t∗

)1/ηκ
(

8
C1c1,s

)1−1/ηκ
.

15. The same proof works replacing t∗ by an arbitrary number in (0, t∞), as long as t > t∗.
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For (4.3.13), we use that (4.3.9) for s implies that for any δ ∈ (0, δt∗), for each W ∈ Ŵs

with |W | > δ/3, and all n > 1,

Gδn(W, t) > (Gδn(W, t∗))1/η

(Gδn(W, s))(1−η)/η >
(
c0,t∗(δ) · enP∗(t∗)

)1/η( 8
C1δc1,s

enP∗(s)
)(η−1)/η

, (4.3.17)

where we used (4.3.10) for t∗. We conclude by taking s = s(κ, t∗) ∈ (0, 1) close enough to
t∗ such that (4.3.16) holds, setting (again, ηκ depends on t)

ω∗κ(t∗, t, δ) = c0,t∗(δ)1/ηκ(8)1−1/ηκ(C1δc1,s)1/ηκ−1 .

Our second key lemma is inspired by [BD22, Lemma 3.11] (the proof below requires a
more involved decomposition of orbits):

Lemma 4.3.7. Let t∗ < t∞ and s∗(t∗) > t∞ be as in Lemma 4.3.3. If P (t∗) > 0 then the
SSP conditions (4.3.1), (4.3.2), and (4.3.3) hold at all t ∈ [t∗, s∗) for ε = 1/4.

Proof of Lemma 4.3.7. We first consider condition (4.3.1) of SSP.1.
By definition of s∗ (recall that inf |P ′−(s)| > − log θ0/2)

θ
t′/2
0 e|P

′
−(t∗)|(t′−t∗) < 1 , ∀t∗ 6 t′ < s∗ . (4.3.18)

Thus for all t′ ∈ [t∗, s∗) there exists κ1 = κ(t∗, t′) > 0 such that

ε̄ := sup
t∗6t6t′

(
θ
t/2
0 e(|P ′−(t∗)|+κ1)(t−t∗)) < 1 . (4.3.19)

For m1 > max{n0(t∗, θ0), nt∗} to be chosen later depending on ε = 1/4, ε̄, δt∗ , and κ1, pick
δ3(m1)∈ (0, δt∗ ] (similarly to the choice of δ̄0 in the proof of Lemma 4.2.1) so small that
any stable curve of length at most δ3 can be cut into at most Kj+ 1 connected components
by S−j for 0 6 j 6 2m1.

For n > m1, write n = `m1 + r, for some 0 6 r < m1 and ` > 1. Let W ∈ Ŵs

with |W | > δ3/3. We group the curves Wi ∈ Sδ3n (W ) with |Wi| < δ3/3, as in the
proof of [BD22, Lemma 3.11], according to the largest k ∈ {0, . . . , ` − 1} such that
T (`−k)m1+rWi ⊂ Vj ∈ Lδ3km1

(W ) (such a k must exist since |W | > δ3/3 while |Wi| < δ3/3).
Denote 16 by Īδ3(`−k)m1+r(Vj) the set of Wi ∈ Gδ3n (W ) thus associated with Vj ∈ Lδ3km1

(W )
(such elements are known to be small only at iterates jm1+r). For suchWi, T (`−k′)m1+r(Wi)
is contained in an element of Gδ3m1k′

(W ) shorter than δ3/3 for k′ < k. So for k > 0, we may
apply the inductive bound (4.2.6) since elements of Īδ3(`−k)m1+r(Vj) can only be created by
intersections with S−m1 at the first ` − k − 1 iterates and with S−m1−r at the last step.
For k = 0, W itself may be longer than δ3. Thus we first subdivide W into at most δ0/δ3
curves of length at most δ3 and then apply (4.2.6) to each piece. This yields, for t∗ 6 t 6 t′,

Sδ3n (W, t) 6
`−1∑
k=0

∑
Vj∈L

δ3
km1

(W )

|e−tSkm1τ |C0(Vj)
∑

Wi∈Ī
δ3
(`−k)m1+r(Vj)

|e−tS(`−k)m1+rτ |C0(Wi)

6
δ0
δ3
θtn0 +

`−1∑
k=1

∑
Vj∈L

δ3
km1

(W )

|e−tSkm1τ |C0(Vj)θ
t((`−k)m1+r)
0 . (4.3.20)

16. Note that Īδ(`−k)m1+r(Vj) was abusively denoted Iδ(`−k)m1+r(Vj) in the proof of [BD20, Lemma 5.2],
see footnote 23 there.
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Next, recalling (4.2.3), for any k > 1, each Vj ∈ Lδ3km1
(W ) is contained in an element

Ui ∈ Gδt∗km1
(W ). Since |Vj | > δ3/3, there are at most 3δt∗/δ3 different Vj corresponding

to each fixed Ui. Then we group each Ui ∈ Gδt∗km1
(W ) according to its most recent long

ancestor Wa ∈ Lδt∗j (W ) for some j ∈ [0, km1]. Note that j = 0 is possible if |W | > δt∗/3.
If |W | < δt∗/3, and no such time j exists for Ui, then by convention we also associate
the index j = 0 to such Ui. In either case, Ui ∈ Iδt∗km1

(W ), and we may apply (4.2.6)
after possibly subdividing W into at most δ0/δt∗ curves of length at most δt∗ . Then, for
j > 1, we apply (4.2.7) from Lemma 4.2.2 to each Iδt∗km1−j(·) (since δ3 6 δt∗ , the constant
m1(δt∗) 6 m1(δ3), so the bound holds with our chosen m1, although it may not be optimal),

Lδ3km1
(W, t) 6 3δt∗

δ3

( ∑
Ui∈I

δt∗
km1

(W )

|e−tSkm1τ |C0(Ui)

+
km1∑
j=1

∑
Wa∈L

δt∗
j (W )

|e−tSjτ |C0(Wa)
∑

Ui∈I
δt∗
km1−j

(Wa)

|e−tSkm1−jτ |C0(Ui)

)

6
3δt∗
δ3

(
δ0
δt∗
θtkm1

0 +
km1∑
j=1

∑
Wa∈L

δt∗
j (W )

|e−tSjτ |C0(Wa)Km1θ
t(km1−j)
0

)
.

Combining this estimate with (4.3.20) yields (summing over k for the j = 0 terms and
adding the term corresponding to k = 0),

Sδ3n (W, t) 6 3δ0
δ3

n

m1
θtn0 + 3δt∗

δ3

`−1∑
k=1

km1∑
j=1

Km1θ
t(n−j)
0 L

δt∗
j (W, t) . (4.3.21)

For fixed k ∈ {1, . . . , ` − 1}, and for each 1 6 j 6 km1 such that Lδt∗j (W ) 6= ∅, the
lower bound (4.3.12) in Lemma 4.3.6 and the distortion constant e−tC > e−t

′C imply (note
that n− j > `m1 + r − km1 > r +m1 > nt∗),

Gδ3n (W, t) >
∑

Wa∈L
δt∗
j (W )

e−tC |e−tSjτ |C0(Wa)
∑

Wi∈G
δ3
n−j(Wa)

|e−tSn−jτ |C0(Wi)

>
ωκ1(t∗, t)
δ3et

′C
e(n−j)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))

∑
Wa∈L

δt∗
j (W )

|e−tSjτ |C0(Wa) . (4.3.22)

Combining (4.3.21) with either (4.3.22) (for j > 1) or (4.3.13) from Lemma 4.3.6 (for
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j = 0) and setting ∆ = 3et′Cδt∗Km1, yields (using that P (t∗) > 0),

Sδ3n (W, t)
Gδ3n (W, t)

6 n
3δ0
δ3m1

θtn0

ω∗κ1(t∗, t, δ3)en(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))

+
`−1∑
k=1

km1∑
j=1

3δt∗
δ3
Km1θ

t(n−j)
0 L

δt∗
j (W, t)

ωκ1 (t∗,t)
δ3et

′C e(n−j)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))L
δt∗
j (W, t)

≤ 3δ0
δ3 · ω∗κ1(t∗, t, δ3) ·m1

n(e−P∗(t∗)ε̄)n + ∆
ωκ1(t∗, t)

`−1∑
k=1

km1∑
j=1

(e−(P∗(t∗)ε̄)n−j

6
3δ0

δ3 · ω∗κ1(t∗, t, δ3) ·m1
nε̄n + ∆

ωκ1(t∗, t)
1

1− ε̄

`−1∑
k=1

ε̄n−km1

6
3δ0

δ3 · ω∗κ1(t∗, t, δ3) ·m1
nε̄n + 3et′Cδt∗Km1

ωκ1(t∗, t)·
ε̄m1

(1− ε̄)(1− ε̄m1) . (4.3.23)

To establish (4.3.1), choose first m1 > nt∗ such that the second term is less than ε
2 , setting

δt := δ3(m1), and then nt > m1 such that the first term is less than ε
2 for n > nt.

We next show (4.3.2). For n > nt, we deduce from (4.3.1) and (4.3.13) (for small κ > 0)
that, for all W ∈ Ŵs with |W | > δt/3,

Lδtn (W, t) > 3
4G

δt
n (W, t) > 3

4ω
∗
κ(t∗, t, δt)enP∗(t∗)e−n(t−t∗)(|P ′−(t∗)|+κ) .

Since e−|P ′−(t∗)|(t−t∗) > θ
t/2
0 > e−tτmin/2 by (4.3.18), while P∗(t∗) > 0, it suffices to take κ

such that (t− t∗)κ+ t
2τmin < tτmin to complete the proof of (4.3.2).

It remains to consider SSP.2. We may assume |W | < δt∗/3 since otherwise (4.3.1) from
SSP.1 implies (4.3.3) with n∗t = nt. As observed in the proof of [BD20, Cor. 5.3], there
exists C̄2 (depending only on the billiard table) such that the first iterate ` = `0 at which
Gδt∗` (W ) contains at least one element of length more than δt∗/3 satisfies

`0 6 n2 = n2(δt∗) := C̄2| log(|W |/δt∗)| .

Since |W | < δt∗/3, it suffices to consider the term corresponding to j = 0 (and k = 0)
in (4.3.23) (the other one is bounded by ε/2 for n > m1 for m1 chosen as above). For this
purpose, for any n = `m1 + r > m1, the first term of (4.3.21) is replaced by

δt∗
3δ3

θtn0 +
`−1∑
k=1

3δt∗
δ3

θtn0 6
3δt∗n
δ3m1

θtn0 , (4.3.24)

where we have applied (4.2.6) from Lemma 4.2.2. For any n > max{n2,m1}, the bound
(4.3.13) from Lemma 4.3.6 is replaced by

Gδ3n (W, t) > ω∗κ1(t∗, t, δ3) · e−tn2τmaxe(n−n2)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗)) . (4.3.25)

Dividing (4.3.24) by (4.3.25), the term corresponding to j = 0 in (4.3.23) is bounded by

3δt∗ n
m1
θtn0

δ3 · ω∗κ1(t∗, t, δ3) · e−tn2τmaxe(n−n2)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))

6
3δt∗etn2τmax

m1 · ω∗κ1(t∗, t, δ3) · δ3
nε̄n−n2 .
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We conclude, since, if n∗t /n2 is large enough (depending on t, ε̄, δ3 = δt) then

n(ε̄n/n2etτmax)n2 <
ε

2 ·
ε̄n2 ·m1·δ3 · ω∗κ1(t∗, t, δ3)

3δt∗
, ∀n > n∗t .

4.3.3 Theorem 4.1.4: Proof of Lemma 4.3.2

In view of the discussion above Lemma 4.3.2, it only remains to show Lemma 4.3.2 to
establish Theorem 4.1.4:

Proof of Lemma 4.3.2. If P (t∞) < 0 we are done, as explained before Lemma 4.3.3.
Assume for a contradiction that P (t∞) > 0. Let t∗ < t∞ and s∗(t∗) > t∞ be as in
Lemma 4.3.3, and fix t∞ < t2 < s∗. Then Lemma 4.3.7 applied to ε = 1/4 gives that the
SSP conditions (4.3.1), (4.3.2), and (4.3.3) hold for all t ∈ [0, t2]. Since t2 > t∞, this is a
contradiction.
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