
LOGARITHMIC BOUNDS FOR ERGODIC SUMS OF
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Abstract. We give a short proof that the ergodic sums of C1 observables for

a C1 flow on T2 admitting a closed transversal curve whose Poincaré map has

constant type rotation number have growth deviating at most logarithmically
from a linear one. For this, we relate the latter integral to the Birkhoff sum of a

well-chosen observable on the circle and use the Denjoy-Koksma inequality. We

also give an example of a nonminimal flow satisfying the above assumptions.

1. Introduction

Since the work of Furstenberg [12], it is known that the classical horocycle flow of
a compact surface of constant negative curvature is uniquely ergodic — it has only
one invariant Borel probability measure. This flow is related to a hyperbolic one,
namely the geodesic flow, in the sense that the horocycle orbits are the unstable
manifolds for the geodesic flow.

Using Symbolic Dynamics arguments (resp. equicontinuity of some functions),
Marcus [16] (resp. [17]) generalized this result to the flow generated by the ori-
entable one-dimensional unstable foliation of a connected basic piece of an Axiom
A diffeomorphism (resp. flow). Later, Bowen and Marcus [4] extended this result
to the higher dimensional strong stable or strong unstable foliation of a basic set
for an Axiom A diffeomorphism or flow.

In their pioneer work, Giulietti and Liverani [13] focused on the one-dimensional
stable foliation of a Cr Anosov diffeomorphism F of the two-torus, inducing a flow ht

called the Giulietti–Liverani (stable horocycle) flow (of F ). Giulietti and Liverani
proved that this flow is uniquely ergodic, minimal and that it admits a closed
transverse curve such that the rotation number of the first return map to this curve
is of constant type. For more basic facts about this flow, see [2, Appendix A].

For any continuous function f : T2 → C, any T > 0 and any x ∈ T2, define

the horocycle integral Hx,T (f) =
∫ T

0
f(ht(x)) dt. By unique ergodicity, we have for

any such x and f ,

lim
T→∞

Hx,T (f)

T
= µs(f) :=

∫
T2

f dµs,

where µs is the unique invariant probability measure of the flow ht.
For large enough r, Giulietti and Liverani introduce a transfer operator for F

on some suitable Banach space. Using eigenvectors of the dual operator associated
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to eigenvalues with modulus larger than the essential spectral radius (Ruelle reso-
nances), they give an asymptotic expansion of Hx,T (f) [13, Theorem 2.8]. The dom-
inant term is the term Tµs(f), corresponding to the trivial resonance λ0 = ehtop ,
where htop is the topological entropy of F . This expansion also involves a negative
power law error term. A simpler asymptotic expansion, in the case where all Ruelle
resonances of the transfer operator have trivial Jordan blocks, can be found in [2,
Equation (1.2)].

In their recent works, V. Baladi [2] and G. Forni [11] independently proved that
horocycle integrals (in the set-up from [13]) do not have deviations, in other words
the expansion is limited to the linear term with a bounded remainder. Their proofs
are quite different: V. Baladi proves the strong result that the map F does not have
non-trivial Ruelle resonance, while G. Forni uses the action of the (pseudo-)Anosov
diffeomorphism on the first cohomology — in the more general setting of surfaces
of genus g > 1 (non-trivial Ruelle resonances can appear only for g > 2).

In this note we give a new, much shorter, proof of the absence of deviations
for horocycle integrals by considering a slightly more general setting: we no longer
assume that the flow can be obtained from the stable foliation of an Anosov dif-
feomorphism. Instead, we only assume that the flow can be recovered from the
suspension of a circle diffeomorphism whose rotation number is of constant type.
In particular, these flows are uniquely ergodic. For clarity, we call “ergodic integral”
for this type of flows the quantity defined as “horocycle integral” previously.

We give an elementary proof that the ergodic integral of a C1 observable along
the trajectory of such a flow on the two-torus grows at most logarithmically if the
observable has zero average with respect to the unique invariant measure of the
flow. This is the content of our main theorem (Theorem 2.2).

When comparing this estimate to the asymptotic expansion given by Giulietti
and Liverani [13, Theorem 2.8], this result gives a new proof of the absence of
deviations for the horocycle integral.

Finally, we prove that the class of flows we consider here is strictly larger than
the class of flows studied by Giulietti and Liverani by constructing a flow satisfying
our assumptions but which is not minimal — in contrast to all flows in [13]. This
is the content of Theorem 3.1.

2. Main result

Given a flow ht on the two-torus, we call ergodic integral of an observable f :

T2 → R at x ∈ T2 and T > 0 the quantity Hx,T (f) :=
∫ T

0
f ◦ ht(x) dt.

Recall the following classical theorem — we give a short proof of this fact using
results from [15] in order to introduce notations for our main result. In particular
the theorem below gives a simple sufficient condition for a flow to be written as the
suspension of a circle diffeomorphism.

Theorem 2.1. If ht is a C1 flow on the torus T2 without critical points nor periodic
orbits, then there exists a smooth closed curve γ transverse to ht such that ht is
smoothly conjugated to the suspension of the first return map R : γ → γ.
Moreover, the flow ht is uniquely ergodic, with a unique invariant measure µ.

Recall that an irrational number is of constant type if the sequence (ak)k of its
coefficients in its continued fraction expansion is bounded. We can now state our
main result, using notations from the previous theorem.
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Theorem 2.2. If ht is a C1 flow on the torus T2 without critical point nor periodic
orbit, and if the rotation number of the Poincaré first return map R is of constant
type, then there exist constants K1 and K2 such that for any C1 observable f with∫
f dµ = 0, any x and any T > 0,

|Hx,T (f)| 6 K1||f ||C1 log(1 + T ) +K2||f ||C1 .

More precise versions of that estimate in the case of Giulietti–Liverani flows can
be found in [2] and in [11]. The bound obtained by V.Baladi [2] is much tighter —
but the proof is longer — while the estimate given by G.Forni [11] applies to flows
on higher genus surfaces.

Proof of Theorem 2.1. By the Birkhoff recurrence theorem, any continuous trans-
formation of a compact space has a recurrent point. Hence h1 has recurrent orbits.
In particular the flow ht also has recurrent points. By our assumptions on the flow,
these orbits cannot be periodic. Hence, by [15, Propositions 14.2.1 and 14.2.3] there
exists a smooth closed curve γ transverse to ht and parametrised by S1 such that
every orbit of ht intersects γ. We can therefore apply [15, Corollary 14.2.3] to get
that ht is smoothly conjugated to the suspension flow of the first return map R to
γ. The conjugation is C1, since the change of coordinates is (θ, t) 7→ ht(θ).

The map R : S1 → S1 is a C1 diffeomorphism of the circle which has no periodic
point. It is a classical result — see [6, Theorem 3.3.5] — that R is uniquely ergodic,
with invariant measure ν, and that its rotation number is irrational. From this, we
deduce that ht is uniquely ergodic, with a unique invariant measure µ. �

We can now give the proof of our main result.

Proof of Theorem 2.2. Suppose that the rotation number ω of R is of constant type.
In order to prove the estimate, we will compare the ergodic integral to the Birkhoff
sum of an appropriate function.

Let u : S1 → R+ be the first return time function to γ, and let f : T2 → R

be a C1-observable such that
∫
T2 f dµ = 0. By construction, γ is a smooth curve,

uniformly transverse to the flow, hence the function u is of class C1. Define the C1

observable g on γ by the formula

g(x) =

∫ u(x)

0

f ◦ ht(x) dt.

To estimate the ergodic integral of f by the Birkhoff sum of g under the map R,
we use the following lemma.

Lemma 2.3. For all x ∈ γ and T > 0 there exists n satisfying T
sup(u) − 1 6 n 6

T
inf(u) and such that ∣∣∣∣∣Hx,T (f)−

n−1∑
k=0

g ◦Rk(x)

∣∣∣∣∣ 6 sup(u) sup |f |.

For all y ∈ T2 there is 0 6 τ < supu and x ∈ γ such that y = hτ (x) and

|Hx,T+τ (f)−Hy,T (f)| 6 sup(u) sup |f |.
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Proof. We first determine n. Since inf u > 0, there exists n such that
n−1∑
k=0

u◦Rk(x) 6

T <
n∑
k=0

u ◦ Rk(x). Hence n inf u 6 T and (n + 1) supu > T . Both estimates on

ergodic integrals then follow from the fact that ht(R
n(x)) = ht+

∑n−1
k=0 u(Rk(x))(x)

for all x ∈ γ and all t ∈ R, . �

In order to conclude by applying the Denjoy–Koksma theorem [14, Theorem
VI.3.1], we also need the following lemma.

Lemma 2.4. If ω = [0, a1, . . . , ak, . . .] is of constant type, then for any integer

n > 1 there exists integers N and (n1, . . . , nN ) such that n − 1 =
N∑
k=0

nkqk, where

pk
qk

= [0, a1, . . . , ak].

Furthermore, we can choose N < 4 log(n)/ log(2) and nk 6 B for all k, where B is
a bound on the coefficients (ak)k>1.

Proof. Since the sequence (qk)k>0 satisfies the recursion formula qk+1 = akqk+qk−1

with q0 = 1 and q1 = a1, we get by induction that 2
k−1
2 6 qk. Therefore, there

exists N such that qN 6 n− 1 < qN+1 with the estimate N < 4 log(n)/ log(2).
Define inductively the sequences (rk)06k6N+1 and (nk)06k6N by rN+1 := n− 1

and the Euclidean division rk+1 = nkqk + rk, with 0 6 rk < qk. Clearly, we get

that n − 1 =
N∑
k=0

nkqk (because q0 = 1). By contradiction, suppose there exists k

such that nk > B + 1. Then

rk+1 = nkqk + rk > (B + 1)qk + rk > ak+1qk + qk−1 + rk = qk+1 + rk.

Therefore rk+1 > qk+1, which is a contradiction. Hence nk 6 B for all k. �

For completeness, we state the Denjoy–Koksma inequality:

Theorem 2.5 (Denjoy–Koksma inequality). Let f be a homeomorphism of the
circle with an irrational rotation number ρ(f). Let µ be a measure invariant by f ,
and let p/q be such that gcd(p, q) = 1 and |qρ(f)− p| < 1/q. Then for all potential

ϕ of bounded variation and all x ∈ S1,

∣∣∣∣q−1∑
k=0

ϕ ◦ fk(x)− q
∫
ϕdµ

∣∣∣∣ < Var(ϕ).

Since g is C1, it is of bounded variation. In addition, the denominators (qk)k>0

associated to ω satisfy the assumption |qkω−pk| < 1/qk for some integer pk coprime
with qk. We can therefore apply the Denjoy–Koksma theorem to g, R and any
qk. Furthermore notice that, by construction, g is of ν-average 0: indeed, let
M = {(x, t) | x ∈ γ, t ∈ [0, u(x)]}/ ∼, with (x, u(x)) ∼ (R(x), 0), be the space such
that ht is conjugated with its unit speed vertical flow. Let µ̄ be the image of µ by
the conjugacy map. Thus, µ̄ is invariant by the vertical flow and so it must be of
the form µ̄ = 1∫

u dν̄
ν̄ ⊗ dt, where ν̄ is invariant under R. By unique ergodicity of

R, we have ν̄ = ν. Thus

0 =

∫
T2

f dµ =

∫
M

f(ht(x)) dµ̄(x, t)

=
1∫
udν

∫
γ

∫ u(x)

0

f(ht(x)) dtdν(x) =
1∫
udν

∫
g dν .
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Fix x ∈ T2 and T > 0. By Lemma 2.3, there exist a point y ∈ γ and an
integer n from which we can estimate the ergodic integral of f at x and T with the
Birkhoff sum of R at y. In order to assume that n > 1, we assume that T > 2 supu
(otherwise, the theorem holds with K1 = 0 and some K2 > 0 depending only on
u). By Lemma 2.4 we can decompose n − 1 as a sum from which we deduce the
equality

n−1∑
k=0

g ◦Rk(y) =

N∑
l=0

nl−1∑
m=0

ql−1∑
k=0

g ◦Rk
Rmql+l−1∑

i=0
niqi

y

 .

From the Denjoy-Koksma inequality, for all 0 6 l 6 N , all 0 6 m < nl and all y in
γ, ∣∣∣∣∣∣

ql−1∑
k=0

g ◦Rk
Rmql+l−1∑

i=0
niqi

y

∣∣∣∣∣∣ < Var(g),

we deduce the estimate∣∣∣∣∣
n−1∑
k=0

g ◦Rk(y)

∣∣∣∣∣ 6 NBVar(g) 6
4BVar(g)

log 2
log n 6

4BVar(g)

log 2
log

T

inf(u)
.

Hence the result,

|Hx,T (f)| 6 |Hx,T (f)−Hy,T−τ (f)|+

∣∣∣∣∣Hy,T−τ (f)−
n−1∑
k=0

g ◦Rk(y)

∣∣∣∣∣+

∣∣∣∣∣
n−1∑
k=0

g ◦Rk(y)

∣∣∣∣∣ ,
6

4BVar(g)

log 2
log

T

inf(u)
+ 2 sup(u) sup |f | =: K̃1 log T + K̃2.

We can bound the total variation Var(g) by the product of the length of γ with
||g′||C0(γ). By the definition of g, we get

||g′||C0(γ) 6 ||u′||C0(γ) ||f ||C0 + ||u||C0(γ)||df ||C0 sup
06t6||u||C0(γ)

||dht||C0 .

Notice that ||u′||C0(γ) and sup
06t6||u||C0(γ

||dht||C0 only depend on the flow ht and on

γ. Hence there exist constants K1 and K2 that depend only on ht such that
K̃1 6 K1||f ||C1 and K̃2 6 K2||f ||C1 . �

Finally, remark that in order to get a rotation number of constant type, the
condition for the flow not to have periodic orbit is necessary: otherwise the existence
of a transverse curve γ is no longer guaranteed. If such a curve exists then the first
return map R has a periodic point, hence has a rational rotation number.

3. A nonminimal flow satisfying the assumptions of Theorem 2.2

We finish this note by proving that the class of flows we are working with is
strictly larger than the class of flows studied by Giulietti and Liverani which are
necessarily minimal. The proof relies on constructing a family of C1 nonminimal
flows. By [15, Proposition 14.2.4], these flows are less than C2.

Theorem 3.1. There exists a flow on T2 satisfying the assumptions of Theorem 2.2
that is not minimal. Furthermore, the flow can be chosen to be renormalized by an
Axiom A diffeomorphism.
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Notice however that all flows satisfying the assumptions of Theorem 2.2 are
obtained by suspending circle diffeomorphisms of irrational rotation numbers, and
thus are minimal on the support of their unique invariant measure.

Without the last condition of renormalization, we can simply construct such a
flow by taking the suspension of a Denjoy counter-example whose rotation number
is of constant type. Such circle diffeomorphisms exist by the original construction
of Denjoy, which works for any irrational rotation number. For an expository on
the construction of Denjoy counter-examples, see for example1 [1]. However, there
is no reason for the flow obtained by suspending a Denjoy counter-example to be
renormalized by an Axiom A diffeomorphism. Adding this condition, the flow falls
into the category of Wu-flows studied by Marcus in [16], in the particular case
where the phase space of the flow is the same as the one of the Axiom A map —
in opposition with just the set of nonwandering points of the map. Finally, results
on Ruelle spectrum and dynamical determinants for Axiom A diffeomorphisms can
be found in [3, 9] (and results on dynamical zeta functions for Axiom A flows in
[10]), but asymptotic expansions of ergodic integrals associated to Wu-flows using
transfer operator techniques are still quite rare in literature and there is room for
work to be done in this setting.

In order to build a flow satisfying this last condition, consider the derived from
Anosov transformation on the two-torus studied in [8, Chapter 9] and [7]. Recall
some notation. Starting from Arnold’s cat map (case β = 0) in the diagonalized

form, and adding a bump in the unstable direction, let fβ :
[
− 1

2 ,
1
2

]2 → R2 be as
follows

fβ

(
x
y

)
:=

1

1 + λ2

(
λ −1
1 λ

)λ2 + βk

(√
x2+y2

2

)
0

0 λ−2

( λ 1
−1 λ

)(
x
y

)
,

where λ = 1+
√

5
2 , −λ2 < β < 0 and k is an even, unimodal function supported in

[−1, 1] such that k(0) = 1 – e.g. k(r) = (1− r2)21[−1,1](r) – so that the map fβ is

invariant by the action of Z2 and induces a map, also called fβ , on the torus T2. It
is shown in [8, Chapter 9] that fβ is a diffeomorphism of class C1 of the torus and
if −λ2 < β < −λ2 + 1 then the origin is an attractive hyperbolic fixed point. Let
Kβ be the invariant subset defined as the complement of the basin of attraction of
0. This map is an explicit example of Smale’s derived from Anosov transformation
as introduced in [18, Section I.9], here obtained by perturbing Arnold’s cat map.

Let eu = 1√
1+λ2

(
λ
1

)
and es = 1√

1+λ2

(
−1
λ

)
be unitary eigenvectors of the

matrix A :=

(
2 1
1 1

)
respectively associated to eigenvalues λ2 and λ−2. Since A is

symmetric, notice that (eu, es) is an orthonormal basis. In this basis the Jacobian
matrix of fβ is

Jac(fβ)(x) =

(
aβ(x) bβ(x)

0 λ−2

)
.

Since the Jacobian is upper-triangular, lines spanned by eu are stable by fβ . As-
suming that k satisfies also k + id k′ 6 1, fβ |Kβ expands uniformly the direction

1I thank Selim Ghazouani for indicating me this reference.
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spanned by eu. In order to construct a stable foliation over Kβ , for X a vec-
tor field, denote (fβ)∗X(x) = (dxfβ)−1X(f(x)) to be the pullback of X by fβ .
Formally, if vsβ = lim

n→+∞
λ−2n(fβ)n∗X, then λ−2(fβ)∗v

s
β = vsβ , or in other words

dxfβ v
s
β(x) = λ−2vsβ(f(x)), vsβ is uniformly contracted by dfβ . For the constant

vector field X ≡ es, formally we get

vsβ(x) = es −
∞∑
i=0

λ−2ibβ(f iβ(x))

i∏
j=0

1

aβ(f jβ(x))
eu, x ∈ T2.(3.1)

This equation being only formal, we need to check that the series inside it converges.
Since bβ is bounded and aβ > 1 on the compact set Kβ , (3.1) defines a vector field
on Kβ , uniformly contracted by fβ :

dxfβ v
s
β(x) = λ−2vsβ(fβ(x))(3.2)

for all x ∈ Kβ . It is shown in [5, Theorems 3.3 and 3.6] — in a slightly more
general context — that (3.1) defines a Lipschitz continuous vector field on T2 for
any fixed β in ] − λ2 + λ−4, 0] and that the map (x, β) 7→ vsβ(x) is continuous on

T2× ]−λ2 +λ−4, 0]. Let ht be the flow generated by vsβ0
for some fixed −λ2 +λ−4 <

β0 < −λ2 + 1. In fact, if we choose for the function k any C2 unimodal and even
function supported in [−1, 1], equal to 1 at 0 and satisfying k + id k′ 6 1, the
induced vector fields vsβ enjoys the same properties as before, but they are also C1

– see the discussion in [5, Theorem 3.7] – hence the flow ht is also C1. We make
such a choice for k. We claim that this flow ht satisfies the condition of Theorem
2.2 and that it is not minimal.

In order to prove this result, we first construct a closed transversal curve γ. We
then construct a particular homotopy between the first return map and a rigid
rotation, where none of the in-between map has a periodic point. From the conti-
nuity of the rotation number, it is enough to compute the rotation number of the
rigid rotation, which happens to be a quadratic integer. The nonminimality follows
from the invariance of the proper closed set Kβ0

by the flow ht. First we need the
following lemma.

Lemma 3.2. The flow ht does not have periodic orbit. This is also true for the
flow generated by vsβ for any −λ2 + λ−4 < β 6 0.

Proof. By construction, each vector field vsβ satisfies dxfβ(vsβ(x)) = λ−2vsβ(fβ(x)).

By differentiating fβ0 ◦ ht(x) and hλ−2t ◦ fβ0(x) according to t, we get that these
two functions satisfy the same Cauchy problem for all x ∈ T2, thus the relation

fβ0
◦ ht = hλ−2t ◦ fβ0

(3.3)

holds by uniqueness of the solution (because vsβ is Lipschitz continuous). Therefore,
if by contradiction ht has a periodic orbit, by applying fnβ0

, for n large enough, we
get an arbitrarily short periodic orbit for the flow. This contradicts the fact that
the component along es in the basis (eu, es) of vsβ0

is constant equal to 1. �

Proof of Theorem 3.1. Since the map (x, β) 7→ vsβ(x) is continuous on the compact

set T2× [β0, 0], the component of these vector fields in the basis (eu, es) along eu is
uniformly bounded and along es is equal to 1, by definition. Therefore, there exists

a vector w of rational slope, say w = 1√
p2+q2

(
q
p

)
, where p and q are coprimes, so
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that w is uniformly transverse to vsβ for all β ∈ [β0, 0]. Define γ to be the closed

curve passing through (0, 0) and with slope p/q. By choice of w, the curve γ is
transverse to vsβ and so for every β in [β0, 0]. We can naturally parametrize γ by

S1.
Let R : S1 → S1 be the first return map to γ of ht. Notice that performing a

time change on this flow does not affect the first return map R, but only the first
return time function u. In order to simplify computations, renormalize the vector
fields as follows

wsβ =
1〈

vsβ , w
⊥
〉vsβ

so that, for each β, the flow φ
(β)
t generated by wsβ has a constant first return time

function uβ ≡ τβ , where w⊥ is the unitary vector equal to w rotated by an angle
π/2. These first return time functions do not depend on β, in other words τβ ≡ τ .
Since b0 ≡ 0, notice that ws0 is a constant vector field (equals everywhere to es),
hence its first return map to γ is a rigid translation Rα : x 7→ x+α. Introduce also

the notation R(β) for the first return map to γ of φ
(β)
t . In particular R = R(β0) and

Rα = R(0).
By [5, Theorem 3.10], the map β 7→ vsβ is continuous for the C0-topology on

the space of vector fields. From a Gronwall type argument, we get that β 7→
R(β) is continuous for the C0-topology. Now, by [14, Proposition II.2.7], the map
β 7→ ρ(R(β)) is continuous, where ρ(R(β)) stands for the rotation number of R(β).
In order to prove that ρ(R) = α, we prove that ρ(R(β)) cannot be rational, but
this directly follows from Lemma 3.2. Hence β 7→ ρ(R(β)) is a constant map and
ρ(R) = α.

We now compute the value of α. Consider lifts w̃s(0), γ̃ and φ̃
(0)
t to R2 of respec-

tively ws0, γ and φ
(0)
t . Let (∂x, ∂y) be the canonical basis of R2. Notice that the

arc {φ̃(0)
t ((0, 1)) | −pτ 6 t 6 0} starts at the point (0, 1) and ends on the branch

of γ̃ containing (0, 0) at some point cw, for some c > 0. The coordinates of this
intersection point satisfy the system of equations

−pτ
〈
ws(0), ∂x

〉
= cq(p2 + q2)−1/2

1− pτ
〈
ws(0), ∂y

〉
= cp(p2 + q2)−1/2,

where 〈·, ·〉 denotes the usual scalar product. Now, notice that c/|γ| = −pα, where
|γ| is the length of the closed curve γ. We can solve these equations for α and get

α =
1

pq

1

λ− p
q

which clearly is a quadratic integer, since λ is. Therefore α is of constant type.
The nonminimality of ht is ensured by properties proven in [8, Chapter 9]. More

precisely, let U be the basin of attraction of (0, 0) for fβ0
and K be its complement

in the torus. In [8, Chapter 9], Coudène proved that the set K is nonempty and
that U and K are invariant by fβ0 . Now, because of (3.3), the sets U and K are
invariant by the flow ht.

Finally, the map f is an Axiom A diffeomorphism since f is transitive [8, Chapter
9] on the hyperbolic set K [5, Theorem 2.9]. Therefore, by the shadowing lemma,
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periodic points are dense in the compact invariant set K which coincides with the
nonwandering set of f . �

Figure 1. Representation of the minimal component K of the
flow (ht). Underneath is the vector field vs generating the flow.

Finally, we give in Figure 1 a representation of the set K. In [8, Chapter 9], it is
proven that K is the closure of the stable leaf W s(p) of a hyperbolic fixed point p
for fβ0

. From the relation (3.3) and the Hartman-Grobman theorem, it follows that
this stable leaf is equal to the orbit of p by the flow ht. From [6, Theorem 3.3.4],
the set K∩γ coincides with any ω-limit set and any α-limit set of R. Therefore, the
set K is the minimal component of ht and is also an attractor for both positive and
negative times. Moreover, K is also the support of the unique invariant measure µ
of ht.

Appendix A. Alternative proof of Theorem 3.1 from semi-conjugacy

We give an alternative proof of Theorem 3.1. More precisely, we use the same
example, but we compute the rotation number in a different way: we construct a
semi-conjugacy map h so that h◦R = Rα◦h. It will follow that the rotation number
of R is α. The construction of h is inspired from the proof of [19, Proposition 7].

Proof. Exactly as in the first proof of Theorem 3.1, we construct the closed transver-
sal curve γ and we renormalize the vector fields vsβ so that the time of first return
function to γ of their associated flows is constant. The computation of α remains
the same, and we get that α is a quadratic integer, hence α is of constant type. In
particular, the rotation Rα is minimal.

We now prove that the first return map R of ht is semi-conjugated to Rα. To
this end, we construct a surjective and continuous function h of the circle.

Let h(Rn(0)) := Rnα(0) for all n ∈ Z. This map is well defined since ht has no
periodic orbit by Lemma 3.2, so does R. In order to extend h into a continuous map,
we first prove that it preserves order of triplets. Fix an orientation of S1 — and
therefore of γ — seen as R/Z. Let x1 := Rn1(0), x2 := Rn2(0) and x3 := Rn3(0)
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be so that (x1, x2, x3) is an ordered triplet of S1 — we can assume that n1, n2

and n3 are distinct. We prove that the triplet (x′1, x
′
2, x
′
3) = (h(x1), h(x2), h(x3)) is

also ordered. Consider the family of curves ϕβ := {φ(β)
t (0) | min(n1, n2, n3)τ 6 t 6

max(n1, n2, n3)τ}. By continuity of (x, β) 7→ wsβ(x), this family depends on β in a
continuous fashion.

Notice that points x1, x2 and x3 correspond to some intersection points between
ϕβ0 and γ, and that points x′1, x′2, and x′3 correspond to some intersection points
between ϕ0 and γ. Furthermore, we can connect x1 to x′1 (respectively x2 to x′2,
and x3 to x′3) with intersection points between γ and ϕβ when varying the value
of β. Therefore we can track the evolution of (x1, x2, x3) with continuous functions
(x1(β), x2(β), x3(β)) of β such that x1(β0) = x1 and x1(0) = x′1 — and similarly
for x2(β) and x3(β).

By contradiction, suppose that the triplet (x′1, x
′
2, x
′
3) is not ordered. By conti-

nuity, this means that for some value of β1 in [β0, 0] and without loss of generality

x1(β1) = x2(β1). In other words, this means that the first return map to γ of φ
(β1)
t

has a periodic point, which contradicts Lemma 3.2.
Therefore, the map h can be lifted into a “degree” one, increasing, function

h̃ : π−1{Rn(0) | n ∈ Z} → π−1{Rnα(0) | n ∈ Z}, where π : R → R/Z is the

canonical projection. In other words, π ◦ h̃ = h ◦ π and h̃(x + 1) − h̃(x) = 1

for all x where h̃ is defined. By minimality of Rα, the range of h̃ is dense in R.
Hence, we can uniquely extend h̃ by a continuous, increasing and surjective function
h̃ : R→ R. Its projection on the circle, still noted h, is also continuous and extends
h into a degree one map of the circle. By continuity of R and of Rα, we get that
h ◦ R = Rα ◦ h. Therefore, by [14, Proposition II.2.10], the rotation number of R
is α, a quadratic integer.

The nonminimality of ht is ensured by properties proven in [8, Chapter 9]. �

Remark A.1. The construction of the conjugacy map h comes from the following
heuristic. Since the stable manifold of 0 under the cat map is blown up into an
open set, the basin of attraction Uβ := T2 rKβ of 0 under fβ , we expect that the
map h relates the orbit of 0 under Rα with the orbit of I under R, where I is the
connected component of γ ∩ Uβ containing 0 (notice that I is a wandering interval
and that its orbit under R is γ∩Uβ , which is dense in γ). More precisely, we expect
h to be similar to the Cantor staircase function, being constant when restricted to
each Rn(I). As in the construction of the Cantor staircase function, we only need
to know the values of h where it is constant, as long as h is non-decreasing and that
this set of values has a connected closure. In the proof above, we chose to define
h first by setting h(xn) = Rnα(0) with xn = Rn(0), but we could have chosen any
sequence xn ∈ Rn(I).
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