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A SHORT PROOF
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Abstract. We give a short proof that the ergodic averages of C1 observables

for a C1 flow on T2 admitting a closed transversal curve whose Poincaré map
has constant type rotation number have growth deviating at most logarithmi-

cally from a linear one. For this, we relate the latter integral to the Birkhoff

sum of a well-chosen observable on the circle and use the Denjoy-Koksma in-
equality. We also give an example of a nonminimal flow satisfying the above

assumptions.

1. Introduction

This work is motivated by the construction by Giulietti and Liverani [8] of the
“horocycle flow” associated to an Anosov diffeomorphism. Fix r > 1 and let F :
T2 → T2 be a Cr Anosov diffeomorphism on the two-torus. Fixing an orientation
of the stable bundle Es and assuming that DF preserves this orientation, Es can
be parametrized by a unitary speed flow ht, called the Giulietti–Liverani (stable
horocycle) flow (of F ). Giulietti and Liverani proved that this flow is uniquely
ergodic, minimal and that it admits a closed transverse curve such that the rotation
number of the first return map to this curve is of constant type. For more basic
facts about this flow, see [2, Appendix A].

For any continuous function f : T2 → C, any T > 0 and any x ∈ T2, define the

horocycle average Hx,T (f) =
∫ T

0
f(ht(x)) dt. By unique ergocity, we have for any

such x and f ,

lim
T→∞

Hx,T (f)

T
= µs(f) :=

∫
T2

f dµs,

where µs is the unique invariant probability measure of the flow ht.
For large enough r, Giulietti and Liverani associate a transfer operator to F on

some suitable Banach space. Using eigenvectors of the dual operator associated
to eigenvalues with modulus larger than the essential spectral radius (Ruelle reso-
nances), they give an asymptotic expansion of Hx,T (f) [8, Theorem 2.8]. The dom-
inant term is the term Tµs(f), corresponding to the trivial resonance λ0 = ehtop ,
where htop is the topological entropy of F . This expansion also involves a negative
power law error term. A simpler asymptotic expansion, in the case where all Ruelle
resonances of the transfer operator have trivial Jordan blocks, can be found in [2,
Equation (1.2)]
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In their recent works, V. Baladi [2] and G. Forni [7] independently proved that
horocycle averages do not have deviations, in other words the expansion is limited
to the linear term with a bounded remainder. Their proofs are quite different:
V. Baladi proves the strong result that the map F does not have non-trivial Ruelle
resonance, while G. Forni uses the action of the (pseudo-)Anosov diffeomorphism
on the first cohomology – in the more general setting of surfaces of genus at least
one.

In this note we give a new, much shorter, proof of the absence of deviations
for horocycle averages by considering a slightly more general setting: we no longer
assume that the flow can be obtained from the stable bundle of an Anosov dif-
feomorphism. Instead, we only assume that the flow can be recovered from the
suspension of a circle diffeomorphism whose rotation number is of constant type.
In particular, these flows are uniquely ergodic. For clarity issues, we call “ergodic
average” for this type of flows the same quantity we defined as “horocycle average”
for Giulietti–Liverani flows.

We give an elementary proof that the ergodic average of a C1 observable along
the trajectory of such a flow on the two-torus grows at most logarithmically if the
observable has zero average with respect to the unique invariant measure of the
flow. This is the content of our main theorem (Theorem 2.2).

When comparing this estimate to the asymptotic expansion given by Giulietti
and Liverani [8, Theorem 2.8], this result gives a new proof of the absence of
deviations for the horocycle average.

Finally, we prove that the class of flows we consider here is strictly larger than the
class of Giulietti–Liverani flows by constructing a flow satisfying our assumptions
but which is not minimal – in contrast to all Giulietti–Liverani flows. This is the
content of Theorem 3.1.

2. Main result

Given a flow ht on the two-torus, we call ergodic average of an observable f :

T2 → C at x ∈ T2 and T > 0 the quantity Hx,T (f) :=
∫ T

0
f ◦ ht(x) dt.

Recall the following classical theorem – we give a short proof of this fact using
results from [10] in order to introduce notations for the proof of our main result.
In particular it gives a simple sufficient condition for a flow to be written as the
suspension of a circle diffeomorphism.

Theorem 2.1. If ht is a C1 flow on the torus T2 without critical points nor periodic
orbits, then there exists a closed curve γ transverse to ht such that ht is smoothly
conjugated to the suspension of the first return map R : γ → γ.
Moreover, the flow ht is uniquely ergodic, with a unique invariant measure µ.

Recall that an irrational number is of constant type if the sequence (ak)k of its
coefficients in its continued fraction expansion is bounded. We can now state our
main result, using notations from the previous theorem.

Theorem 2.2. If ht is a C1 flow on the torus T2 without critical point nor periodic
orbit, and if the rotation number of the Poincaré first return map R is of constant
type, then there exist constants K1 and K2 such that for any C1 observable f with∫
f dµ = 0, any x and any T > 0,

|Hx,T (f)| 6 K1||f ||∞ log+ T +K2||f ||∞.
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More precise versions of that estimate in the case of Giulietti–Liverani flows can
be found in [2] and in [7]. The bound obtained by V.Baladi [2] is much tighter –
but the proof is longer – while the estimate given by G.Forni [7] applies to flows on
higher genus surfaces.

Proof of Theorem 2.1. By the theorem of Krylov–Bogolyobov, there exists a prob-
ability measure µ invariant by the flow. We can apply the Poincaré recurrence
theorem to a non-zero time of the flow to get recurrent points. It follows that
the flow ht has recurrent orbits. By hypothesis on the flow, these orbits cannot
be periodic. Hence, by [10, Propositions 14.2.1 and 14.2.3] there exists a smooth
closed curve γ transverse to ht and parametrised by S1 such that every orbit of ht
intersects γ. We can therefore apply [10, Corollary 14.2.3] to get that ht is smoothly
conjugated to the suspension flow of the first return map R to γ. The conjugation
is C1, since the change of coordinates is (θ, t) 7→ ht(θ).

The map R : S1 → S1 is a C1 diffeomorphism of the circle which has no periodic
point. It is a classical result – see [4, Theorem 3.3.5] – that R is uniquely ergodic,
of invariant measure ν, and that its rotation number is irrational. From this, we
deduce that ht is uniquely ergodic, with a unique invariant measure µ. �

We can now give the proof of our main result.

Proof of Theorem 2.2. Suppose that the rotation number ω of R is of constant type.
In order to prove the estimate, we will compare the ergodic average to the Birkhoff
sum of an appropriate function.

Let us call u : S1 → R+ the time of first return to γ, and let f : T2 → R be a
C1-observable such that

∫
T2 f dµ = 0. The function u is of class C1. Define the C1

observable g on γ by the formula

g(x) =

∫ u(x)

0

f ◦ ht(x) dt.

To estimate the ergodic average of f by the Birkhoff sum of g under the map R,
we use the following lemma.

Lemma 2.3. For all x ∈ γ and T > 0 there exists n satisfying T
sup(u) 6 n 6

T
inf(u)

and such that ∣∣∣∣∣Hx,T (f)−
n−1∑
k=0

g ◦Rk(x)

∣∣∣∣∣ 6 sup(u) sup |f |.

For all y ∈ T2 there is 0 6 τ < supu and x ∈ γ such that y = hτ (x) and

|Hx,T+τ (f)−Hy,T (f)| 6 sup(u) sup |f |.

Proof. We only prove the estimate on n. Since inf u > 0, there exists n such that
n−1∑
k=0

u ◦Rk(x) 6 T <
n∑
k=0

u ◦Rk(x). Hence n inf u 6 T and n supu > T . �

In order to conclude by applying the Denjoy–Koksma theorem (see [9, Theorem
VI.3.1]), we also need the following lemma.

Lemma 2.4. If ω = [0, a1, . . . , ak, . . .] is of constant type, then for any integer

n > 1 there exists integers N and (n1, . . . , nN ) such that n − 1 =
N∑
k=0

nkqk, where

pk
qk

= [0, a1, . . . , ak].
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Furthermore, we can choose N < 4 log(n)/ log(2) and nk 6 B for all k, where B is
a bound on the coefficients (ak)k>1.

Proof. Since the sequence (qk)k satisfies the recursion formula qk+1 = akqk + qk−1

with q0 = 1 and q1 = a1, we get by induction that 2
k−1
2 6 qk. Therefore, there

exists N such that qN 6 n− 1 < qN+1 with the estimate N < 4 log(n)/ log(2).
Define inductively the sequences (rk)06k6N+1 and (nk)06k6N by rN+1 := n− 1

and the Euclidean division rk+1 = nkqk + rk, with 0 6 rk < qk. Clearly, we get

that n − 1 =
N∑
k=0

nkqk (because q0 = 1). By contradiction, suppose there exists k

such that nk > B + 1. Then

rk+1 = nkqk + rk > (B + 1)qk + rk > ak+1qk + qk−1 + rk = qk+1 + rk.

Therefore rk+1 > qk+1, which is a contradiction. Hence nk 6 B for all k. �

Since g is C1, it is of bounded variation. In addition, the denominators (qk)k
associated to ω satisfy the assumption |qkω − p| < 1/qk for all integers p. We can
therefore apply the Denjoy–Koksma theorem to g, R and any qk. Furthermore
notice that, by construction, g is of ν-average 0.

Fix x ∈ T2 and T > 0. By Lemma 2.3, there exist a point y ∈ γ and an integer
n from which we can estimate the ergodic average of f at x with the Birkhoff sum
of R at y. By Lemma 2.4 we can decompose n− 1 in a sum from which we deduce
the equality

n−1∑
k=0

g ◦Rk(y) =

N∑
l=0

nl−1∑
m=0

ql−1∑
k=0

g ◦Rk
Rmql+l−1∑

i=0
niqi

y

 .

From the Denjoy-Koksma inequality, for all 0 6 l 6 N , all 0 6 m < nl and all y in
γ, ∣∣∣∣∣∣

ql−1∑
k=0

g ◦Rk
Rmql+l−1∑

i=0
niqi

y

∣∣∣∣∣∣ < Var(g),

we deduce the estimate∣∣∣∣∣
n−1∑
k=0

g ◦Rk(y)

∣∣∣∣∣ 6 NBVar(g) 6
4BVar(g)

log 2
log n 6

4BVar(g)

log 2
log

T

sup(u)
.

Hence the result,

|Hx,T (f)| 6 |Hx,T (f)−Hy,T−τ (f)|+

∣∣∣∣∣Hy,T−τ (f)−
n−1∑
k=0

g ◦Rk(y)

∣∣∣∣∣+

∣∣∣∣∣
n−1∑
k=0

g ◦Rk(y)

∣∣∣∣∣ ,
6

4BVar(g)

log 2
log

T

sup(u)
+ 2 sup(u) sup |f | =: K̃1 log T + K̃2.

We can bound Var(g) by the product of the length of γ with supγ |g′|. By the
definition of g, we get supγ |g′| 6 supγ |u′| ||f ||∞. Notice that supγ |u′| only depends
on the flow ht and on γ. Hence there exist constants K1 and K2 that depend only
on ht such that K̃1 6 K1||f ||∞ and K̃2 6 K2||f ||∞. �

Finally, remark that in order to get a rotation number of constant type, the
condition for the flow to not have periodic orbit is necessary: otherwise the existence
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of a transverse curve γ is no longer guaranteed, but if such a curve exists then the
first return map R has a periodic point, hence has a rational rotation number.

3. A nonminimal flow satisfying the assumptions of Theorem 2.2

We finish this note by proving that the class of flows we are working with is
strictly larger than the class of Giulietti–Liverani flows which are necessarily min-
imal. The proof relies on constructing a family of C1 nonminimal flows. By [10,
Proposition 14.2.4], these flows are at best C2−ε.

Theorem 3.1. There exists a flow on T2 satisfying the assumptions of Theorem
2.2 that is not minimal. Furthermore, the flow can be chosen to be renormalized by
an Axiom A diffeomorphism.

Without the last condition of renormalization, we can simply construct such a
flow by taking the suspension of a Denjoy counter-example whose rotation number
is of constant type. Such circle diffeomorphisms exist by the original construction
of Denjoy, which works for any irrational rotation number. For an expository on
the construction of Denjoy counter-examples, see for example1 [1]. However, there
is no reason for the flow obtained by suspending a Denjoy counter-example to be
renormalized by an Axiom A diffeomorphism.

In order to build a flow satisfying this last condition, consider the derived from
Anosov transformation on the two-torus studied in [6, Chapter 9] and [5]. Recall

some notation. Let fβ :
[
− 1

2 ,
1
2

]2 → R2 be as follow

fβ

(
x
y

)
:=

1

1 + λ2

(
λ −1
1 λ

)λ2 + βk

(√
x2+y2

2

)
0

0 λ−2

( λ 1
−1 λ

)(
x
y

)
,

where λ = 1+
√

5
2 , −λ2 < β < 0 and e.g. k(r) = (1− r2)21[−1,1](r) so that the map

fβ is invariant by the action of Z2 and induces the map, also called fβ , on the torus
T2. It is shown in [6, Chapter 9] that fβ is a diffeomorphism of class C1 of the torus
and if −λ2 < β < −λ2 + 1 then the origin is an attractive hyperbolic fixed point.
This map is an explicit example of Smale’s derived from Anosov transformation as
introduced in [11, Section I.9], here obtained by perturbing Arnold’s cat map.

Let eu = 1√
1+λ2

(
λ
1

)
and es = 1√

1+λ2

(
−1
λ

)
be unitary eigenvectors of the

matrix A :=

(
2 1
1 1

)
respectively associated to eigenvalues λ2 and λ−2. Since A is

symmetric, notice that (eu, es) is an orthonormal basis. In this basis the Jacobian
matrix of fβ is

Jac(fβ)(x) =

(
aβ(x) bβ(x)

0 λ−2

)
.

It is shown in [3, Theorems 3.4 and 3.7] – in a slightly more general context – that
the following vector field is well defined and Lipschitz continuous

vsβ(x) = es −
∞∑
i=0

λ2ibβ(f i(x))

i∏
j=0

1

aβ(f j(x))
eu, x ∈ T2

1I thank Selim Ghazouani for indicating me this reference.
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for any fixed β in ]−λ2 +λ−4, 0] and that the map (x, β) 7→ vsβ(x) is continuous on

T2× ]−λ2 +λ−4, 0]. Let ht be the flow generated by vsβ0
for some fixed −λ2 +λ−4 <

β0 < −λ2. In fact, if we choose for the function k any C2 unimodal and even function
supported in [−1, 1], equal to 1 at 0, the induced vector field vs enjoys the same
properties as before, but it is also C1 – see the discussion in [3, Theorem 3.8] –
hence the flow ht is also C1. We make such a choice for k. We claim that this flow
satisfies the condition of Theorem 2.2 and that it is not minimal.

In order to prove this result, we first construct a closed transversal curve γ. We
then construct a particular homotopy between the first return map and a rigid ro-
tation, where none of the in-between map has a periodic point. From the continuity
of the rotation number, it is enough to compute the rotation number of the rigid
rotation, which happens to be a quadratic integer. The nonminimality follows from
the invariance of a proper closed set K by the flow ht. First we need the following
lemma.

Lemma 3.2. The flow ht does not have periodic orbit. This is also true for the
flow generated by vsβ for any −λ2 + λ−4 < β 6 0.

Proof. By construction, each vector field vsβ satisfies dxfβ(vsβ(x)) = λ−2vsβ(fβ(x)).
By differentiating according to t and since vsβ is Lipschitz continuous, the relation

fβ0
◦ ht = hλ−2t ◦ fβ0

(3.1)

holds. Therefore, if by contradiction ht has a periodic orbit, by applying fnβ0
, for n

large enough, we get an arbitrarily short periodic orbit for the flow. This contradicts
the fact that the component along es in the basis (eu, es) of vsβ0

is constant equal
to 1. �

Proof of Theorem 3.1. Since the map (x, β) 7→ vsβ(x) is continuous on the compact

set T2× [β0, 0], the component of these vector fields in the basis (eu, es) along eu is
uniformly bounded and along es is equal to 1, by definition. Therefore, there exists

a vector w of rational slope, say w = 1√
p2+q2

(
q
p

)
, where p and q are coprimes.

Define γ to be the closed curve passing through (0, 0) and with slope p/q. By choice
of w, the curve γ is transverse to vsβ and so for every β in [β0, 0]. We can naturally
parametrize γ by S1.

Let R : S1 → S1 be the map of first return to γ of ht. Notice that performing a
time change on this flow does not affect the first return map R, but only the time
of first return function u. In order to simplify computations, renormalize the vector
fields as following

wsβ =
1〈

vsβ , w
⊥
〉vsβ

so that, for each β, the flow φ
(β)
t generated by wsβ has a constant time of first return

function uβ ≡ τβ , where w⊥ is the unitary vector equal to w rotated by an angle
π/2. These time of first return functions do not depend on β, in other words τβ ≡ τ .
Since b0 ≡ 0, notice that ws0 is a constant vector field, hence its map of first return
to γ is a rigid translation Rα : x 7→ x+α. Introduce also the notation R(β) for the

first return map to γ of φ
(β)
t .

By [3, Theorem 3.10], the map β 7→ vsβ is continuous for the C0-topology on
the space of vector fields. From a Gronwall type argument, we get that β 7→
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R(β) is continuous for the C0-topology. Now, by [9, Proposition II.2.7], the map
β 7→ ρ(R(β)) is continuous, where ρ(R(β)) stands for the rotation number of R(β).
In order to prove that ρ(R) = α, we prove that ρ(R(β)) cannot be rational, but
this directly follows from Lemma 3.2. Hence β 7→ ρ(R(β)) is a constant map and
ρ(R) = α.

We now compute the value of α. Consider lifts w̃s(0), γ̃ and φ̃
(0)
t to R2 of respec-

tively ws0, γ and φ
(0)
t . Let (∂x, ∂y) be the canonical basis of R2. Notice that the

arc {φ̃(0)
t ((0, 1)) | −qτ 6 t 6 0} starts at the point (0, 1) and ends on the branch

of γ̃ containing (0, 0) at some point cw, for some c > 0. The coordinates of this
intersection point satisfy the system of equations

−qτ
〈
ws(0), ∂x

〉
= cq(p2 + q2)−2

1− qτ
〈
ws(0), ∂y

〉
= cp(p2 + q2)−2,

where 〈·, ·〉 denotes the usual scalar product. Now, notice that c/|γ| = −qα, where
|γ| is the length of the closed curve γ. We can solve these equations for α and get

α =
1

q2

1

λ+ p
q

which clearly is a quadratic integer, since λ is. Therefore α is of constant type.
The nonminimality of ht is ensured by properties proven in [6, Chapter 9]. More

precisely, let U be the basin of attraction of (0, 0) for fβ0
and K be its complement

in the torus. In [6, Chapter 9], Coudène proved that the set K is nonempty and
that U and K are invariant by fβ0

. Now, because of (3.1), the sets U and K are
invariant by the flow ht.

Finally, the map f is an Axiom A diffeomorphism since f is transitive [6, Chapter
9] on the hyperbolic set K [3, Theorem 2.9]. Therefore, by the shadowing lemma,
periodic points are dense in the compact invariant set K which coincides with the
nonwandering set of f . �

Finally, we give in Figure 1 a representation of the set K. In [6, Chapter 9], it is
proven that K is the closure of the stable leaf W s(p) of a hyperbolic fixed point p
for fβ0 . From the relation (3.1) and the Hartman-Grobman theorem, it follows that
this stable leaf is equal to the orbit of p by the flow ht. From [4, Theorem 3.3.4],
the set K∩γ coincides with any ω-limit set and any α-limit set of R. Therefore, the
set K is the minimal component of ht and is also an attractor for both positive and
negative times. Moreover, K is also the support of the unique invariant measure µ
of ht.

Notice however that flows obtained by suspending circle diffeomorphisms of ir-
rational rotation number are minimal on the support of their unique invariant
measure.

Appendix A. Alternative proof of Theorem 3.1 from semi-conjugacy

We give an alternative proof of Theorem 3.1. More precisely, we use the same
example, but we compute the rotation number in a different way: we construct
a semi-conjugacy map h so that h ◦ R = Rα ◦ h. It will follow that the rotation
number of R is α. The construction of h is inspired from the one in the proof of
[12, Proposition 7].
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Figure 1. Representation of the minimal component K of the
flow (ht). Underneath is the vector field vs generating the flow.

Proof. Exactly as in the first proof of Theorem 3.1, we construct the closed transver-
sal curve γ and we renormalize the vector fields vsβ so that the time of first return
function to γ of their associated flows is constant. The computation of α remains
the same, and we get that α is a quadratic integer, hence α is of constant type. In
particular, the rotation Rα is minimal.

We now prove that the first return map R of ht is semi-conjugated to Rα. To
this end, we construct a surjective and continuous function h of the circle as follow.

Let h(Rn(0)) := Rnα(0) for all n ∈ Z. This map is well defined since ht has no
periodic orbit by Lemma 3.2, so does R. In order to extend h into a continuous
map, we first prove that it preserves order of triplets. Fix an orientation of S1 –
and therefore of γ – seen as R/Z. Let x1 := Rn1(0), x2 := Rn2(0) and x3 := Rn3(0)
be so that (x1, x2, x3) is an ordered triplet of S1 – we can assume that n1, n2 and
n3 are distinct. We prove that the triplet (x′1, x

′
2, x
′
3) = (h(x1), h(x2), h(x3)) is also

ordered. Consider the family of curves ϕβ := {φ(β)
t (0) | min(n1, n2, n3)τ 6 t 6

max(n1, n2, n3)τ}. By continuity of (x, β) 7→ wsβ(x), this family of curves depends
on β in a continuous fashion.

Notice that points x1, x2 and x3 correspond to some intersection points between
ϕβ0

and γ, and that points x′1, x′2, and x′3 correspond to some intersection points
between ϕ0 and γ. Furthermore, we can connect x1 to x′1 (respectively x2 to x′2,
and x3 to x′3) with intersection points between γ and ϕβ when varying the value
of β. Therefore we can track the evolution of (x1, x2, x3) with continuous functions
(x1(β), x2(β), x3(β)) of β such that x1(β0) = x1 and x1(0) = x′1 – and similarly for
x2(β) and x3(β).

By contradiction, suppose that the triplet (x′1, x
′
2, x
′
3) is not ordered. By conti-

nuity, this means that for some value of β1 in [β0, 0] and without loss of generality

x1(β1) = x2(β1). In other words, this means that the first return map to γ of φ
(β1)
t

has a periodic point, which contradicts Lemma 3.2.
Therefore, the map h can be lifted into a “degree” one, increasing, function

h̃ : π−1{Rn(0) | n ∈ Z} → π−1{Rnα(0) | n ∈ Z}, where π : R → R/Z is the
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canonical projection. In other words, π ◦ h̃ = h ◦ π and h̃(x + 1) − h̃(x) = 1

for all x where h̃ is defined. By minimality of Rα, the range of h̃ is dense in R.
Hence, we can uniquely extend h̃ by a continuous, increasing and surjective function
h̃ : R→ R. Its projection on the circle, still noted h, is also continuous and extends
h into a degree one map of the circle. By continuity of R and of Rα, we get that
h ◦R = Rα ◦ h. Therefore, by [9, Proposition II.2.10], the number of rotation of R
is α, a quadratic integer.

The nonminimality of ht is ensured by properties proven in [6, Chapter 9]. �
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