A FAMILY OF NATURAL EQUILIBRIUM MEASURES
FOR SINAI BILLIARD FLOWS

JEROME CARRAND

ABSTRACT. The Sinai billiard flow on the two-torus, i.e., the periodic Lorentz gas, is a con-
tinuous flow, but it is not everywhere differentiable. Assuming finite horizon, we relate the
equilibrium states of the flow with those of the Sinai billiard map 7" — which is a discontinuous
map. We propose a definition for the topological pressure Pi (T, g) associated to a potential
g. We prove that for any piecewise Holder potential g satisfying a mild assumption, Pi (T, g)
is equal to the definitions of Bowen using spanning or separating sets. We give sufficient
conditions under which a potential gives rise to equilibrium states for the Sinai billiard map.
We prove that in this case the equilibrium state py is unique, Bernoulli, adapted and gives
positive measure to all nonempty open sets. For this, we make use of a well chosen transfer
operator acting on anisotropic Banach spaces, and construct the measure by pairing its max-
imal eigenvectors. Last, we prove that the flow invariant probability measure fiy, obtained
by taking the product of p, with the Lebesgue measure along orbits, is Bernoulli and flow
adapted. We give examples of billiard tables for which there exists an open set of potentials
satisfying those sufficient conditions.

1. INTRODUCTION

1.1. Billiards and equilibrium states. In this work, we are concerned with a class of
dynamics with singularities: the dispersing billiards introduced by Sinai [30] on the two-torus.
A Sinai billiard on the torus is (the quotient modulo Z?2, for position, of) the periodic planar
Lorentz gas (1905) model for the motion of a single dilute electron in a metal. The scatterers
(corresponding to atoms of the metals) are assumed to be strictly convex (but not necessarily
discs). Such billiards have become fundamental models in mathematical physics.

To be more precise, a Sinai billiard table @ on the two-torus T? is a set Q@ = T? \ B
with B = uiDlei for some finite number D > 1 of pairwise disjoint closed domains B;, called
scatterers, with C® boundaries having strictly positive curvature — in particular, the scatterers
are strictly convex. The billiard flow ¢; is the motion of a point particle travelling at unit
speed in @ with specular reflections off the boundary of the scatterers. Identifying outgoing
collisions with incoming ones in the phase space, the billiard flow is continuous. However, the
grazing collisions — those tangential to scatterers — give rise to singularities in the derivative
[13]. The Sinai billiard map T — also called collision map — is the return map of the single
point particle to the scatterers. Because of the grazing collisions, the Sinai billiard map is a
discontinuous map.
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Sinai billiard maps and flows both preserve smooth invariant probability measures, respec-
tively usrp and fisgp, which have been extensively studied: (7T, usgs) and (¢, isg) are
uniformly hyperbolic, ergodic, K-mixing [30, @, 31], and Bernoulli [20, 15]. The measure psrp
is T-adapted [24] in the sense of the integrability condition:

/ llog d(z, Su1)| dptsrs < o,

where S41 is the singularity set for T*!. Both systems enjoy exponential decay of correlations
[34, [18]. Since the billiard has many periodic orbits, it thus has many other ergodic invariant
measures, but until very recently most of the results apply to perturbations of psgrp [12} [17].

In the case of an Anosov flow, it is known since the work of Bowen [7] that the Kolmogorov-
Sinai entropy is upper-semicontinuous, which guarantees the existence of measures of maximal
entropy, or more generally, of equilibrium states. Because of the singularities, billiard flows are
not Anosov and therefore methods used in the context of Anosov flows cannot be applied easily.
The upper-semicontinuity of the entropy is not known at the moment, and, more generally,
the existence of equilibrium states has to be treated one potential at the time.

In a recent paper, Baladi and Demers [3] proved, under a mild technical assumption and
assuming finite horizon, that there exists a unique measure of maximal entropy pu. for the
billiard map, and that p, is Bernoulli, T-adapted, charges all nonempty open sets and does
not have atoms. Their construction of this measure relies on the use of a transfer operator
acting on anisotropic Banach spaces, similar to those used by [I8] in order to study pusgp.
Combining their work with those of Lima-Matheus [25] and Buzzi [11], Baladi and Demers
proved that their exists a positive constant C such that

(1.1) Ce™ < #FixT™, Ym>1,

where #FixT™ denotes the number of fixed points of T, and h, is the topological entropy
of the map T from [3]. Baladi and Demers also give a condition under which pu, and ugrp are
different.

In a subsequent paper, Baladi and Demers [4] constructed a family of equilibrium states p
for T" associated to the family of geometric potentials —tlog J*T', where J“I' is the unstable
Jacobian of T" and t € (0,t,) for some t, > 1. In the case t = 1, u; = psrp. The construction
again relies on the use of a family of transfer operators £; acting on anisotropic Banach spaces.
For each t € (0,t,), they proved that u; is the unique equilibrium state associated with the
potential —tlog J“T, that p; is mixing, T-adapted, has full support and does not have atoms.
Baladi and Demers also showed that each transfer operator £; has a spectral gap, from which
they deduced the exponential rate of mixing for each measure s, for C' observables.

Even more recently, Demers and Korepanov [16] proved a polynomial decay of correlations
for the measure u, for Holder observables under an assumption slightly stronger than the one
used in [3]. Nonetheless, thanks to a result annonced by Téth [32], the assumptions from [3]
and [I6] are satisfied for generic billiard tables.

In this paper, we give a sufficient condition under which a piecewise Holder potential g
admits equilibrium states for 7. Under this assumption, we prove that the equilibrium state
is in fact unique, Bernoulli, T-adapted and charges all nonempty open sets. We prove that its
lift into a flow invariant measure is Bernoulli and flow-adapted. We also identify the potential
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g = —htop(¢1)T to be such that its corresponding equilibrium states for 7' — whenever they
exist — are in bijection with measures of maximal entropy of the billiard flow.

Notice that the geometric potentials —tlog J“T" are not piecewise Holder, and thus the work
of Baladi and Demers [4] on those potentials is distinct from ours.

1.2. Statement of main results — Organization of the paper. Since transfer operator
techniques are simpler to implement for maps than for flows, we will be concerned with the
associated billiard map T : M — M defined to be the first collision map on the boundary
of @, where M = 0Q x [—n/2,7/2]. We assume as in [34], 3], that the billiard table @ has
finite horizon, in the sense that the billiard flow does not have any trajectories making only
tangential collisions — in particular, this implies that the return time function 7 to a scatterers
is bounded.

The first step is to find a suitable notion of topological pressure Py (T, g) for the discontinuous
map 7" and a potential g : M — R. In order to define it, we introduce as in [3], the following
increasing family of partition of M. Let P be the partition into maximal connected sets
on which both 7" and T~! are continuous, and let P = Vi T~¥P. Then the sequence

> pepy SUPP eSn9 is submultiplicative, where S,g = %Z?:_ol g o T" is the Birkhoff sum of g.
We can thus define the topological pressure by

Definition 1.1. P.(T,g) = hIJIrl Llog ZPePg supp e5n9
n—-+0o0

Section [2|is dedicated to the study of this quantity. In particular, we prove (Proposition
that whenever the potential g is smooth enough — piecewise Holder — and Py (T, g) —supg > 0
then P, (T, g) coincides with both Bowen’s definitions using spanning sets and separating sets.
We also prove (Lemma that for each T-invariant measure p, we have Py (T, g) > hu(T) +
J gdp. Finally, we show that if g = —hiop(¢1)7 admits an equilibrium state j4, then the
measure fig = ([ 7 dug)_1 fg ® A is a measure of maximal entropy for the billiard flow, seen as
a suspension flow over T', where A is the Lebesgue measure in the flow direction.

To state our existence results (in Section @, we need to quantify the recurrence to the
singular set. Fix an angle g close to /2 and ng € N. We say that a collision is pg-grazing
if its angle with the normal is larger than ¢y in absolute value. Let sg = so(¢o,n0) € (0,1]
denote the smallest number such that

(1.2) any orbit of length ng has at most sgng collisions which are ¢g-grazing.

Due to the finite horizon condition, we can choose g and ng such that sy < 1. We refer to [3]
§2.4] for further discussion on this quantity. From [I3], A = 1+ KminTmin > 1 is the expanding
factor in the hyperbolicity of T, where Ky, is the minimal curvature of the scatterers and
Tmin 1S the minimum of the return time function 7. Define Sy = {(r,¢) € M | |¢| = 7/2}
the set of grazing collisions, and &4, = U;_,T FiSy the singular set of T%". Call N(-) the
e-neighbourhood of a set. Then

Theorem 1.2. If g is a bounded, piecewise Holder potential such that P.(T, g)—sup g > solog?2
and log A > sup g — inf g, then there exists a probability measure j14 such that
(1) pg is T-invariant, T-adapted and for all k € 7Z, there exists C, > 0 such that
pg(Nz(Sk)) < Cklloge| ™7, where v > 1 is such that P(T,g) —supg > vsolog2.
(i) pg the unique equilibrium state of T under g: that is Pu(T,g) = h,,(T) + [ gdpg and
P(T,g) > hu(T) + [ gdu for all p # pg.
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(iit) pg is Bemoullﬂ and charges all nonempty open sets.

If the assumption log A > sup g — inf g is weakened into the condition SSP.1 (Definition ,
then item (i) still holds. If the assumption log A > sup g —inf g is weakened into the condition
SSP.2 (Definition[3.5), then items (i), (i) and (iti) hold.

The above theorem will follow from Proposition Lemmal6.2] Corollary and Propo-
sitions [6.18], [6.15}, [6.10] Furthermore, assuming the sparse recurrence to singularities condition
from [3], we provide in Remark an open set of potentials, each having SSP.1 and SSP.2.

The tool used to construct the measure fi4 is a transfer operator L, with L, f = (fe9/J*T)o
T—!, similar to the one used in [3] corresponding to the case g = 0. This operator and the
anisotropic Banach spaces on which it acts are defined in details in Section Section
contains key combinatorial growth lemmas, controlling the growth in weighted complexity of
the iterates of a stable curve. These lemmas will be crucial since the quantity they control
appears in the norms of the iterates of £,. In Section |5, we prove a (degenerated) “Lasota—
Yorke” type inequality (Proposition — giving an upper bound on the spectral radius of
Ly — as well as a lower bound on the spectral radius (Theorem [5.3)).

Section |§| is devoted to the construction and the properties of the measure i . From the
estimates on the norms from the previous section, we are able to construct left and right
maximal eigenvectors (7 and v) for £,. We construct the measure p, by pairing these eigen-
vectors. We then prove the estimates on the measure of a neighbourhood of the singular sets
(Lemma . Section contains the key result of the absolute continuity of the stable and
unstable foliations with respect to g, as well as the proof that p, has total support — this is
done by extending v into a measure and exploiting the v-almost everywhere positive length of
unstable manifolds from Section In Section we show that p is ergodic, from which
we bootstrap to K-mixing using a Hopf argument. Adapting [15] with modifications from [3],
we deduce from the hyperbolicity and the K-mixing that 4 is Bernoulli. Still in Section
we give an upper-bound on the measure of weighted Bowen balls, from which we deduce, using
the Shannon-MacMillan-Breiman theorem, that s, is an equilibrium state for 7" under the
potential g (Corollary . Finally, the Section is dedicated to the uniqueness of the
equilibrium state 1.

In Sectionm we prove using arguments from [I3] that (¢, fig) is K-mixing (Proposition,
and again, using the hyperbolicity of the billiard flow, we adapt [I5] in order to prove that
(¢¢, ig) is Bernoulli (Proposition . Finally, we prove that fi, is flow adapted in the sense of
the integrability condition formulated in Proposition We summarize these results about
the billiard flow in the following theorem.

Theorem 1.3. Let g be a potential satisfying the assumptions from Theorem [1.2, and let
fg = ([7dpg)tug @ X\. Then fiy is a ¢i-invariant Borel probability measure that is an
equilibrium states for ¢y and any potential g such that g = \(g) — P(¢1,§)7, where A(g)(x) =

fOT(x) G(¢¢(x)) dt. Furthermore, fig is flow adapted and (¢, fig) is Bernoulli.
In a subsequent joint work with Baladi and Demers [2], we bootstrap from the results of the
present paper to show that if Aiop(P1)Tmin > Solog2 then the potential —hiop(¢1)7 satisfies

the sufficient assumptions SSP.1 and SSP.2 in our Theorem thus constructing a measure
of maximal entropy for the billiard flow. This is done by studying the family of potentials

1Recall that Bernoulli implies K-mixing, which implies strong mixing, which implies ergodic.
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—t7 and proving that the maximal value o, of ¢ such that —t'7 has SSP.1 and SSP.2 for all
0 <t/ <t, satisfies tog > htop(¢1). By Remark and Corollary for every small enough
|t|, —t7 has SSP.1 and SSP.2 (thus t» > 0), and the case t = hiop(¢1) corresponds to measures
of maximal entropy for the billiard flow.

2. TOPOLOGICAL PRESSURE, VARIATIONAL PRINCIPLE AND ABRAMOV FORMULA

In this section, we formulate definitions of topological pressure for the billiard map T under
a potential g, and prove that — under some conditions on g — they are equivalent. Using a
classical estimate, we then prove one direction of the variational principle. Finally, making
use of the Abramov formula, we relate equilibrium states of T' with the ones of the billiard
flow. More specifically, we identify the potential for T" which is related to — up to existence —
the measures of maximal entropy of ¢;.

We first introduce notation: Adopting the standard coordinates = = (r, ¢) on each connected
component M; of

where r denotes arclength along 9B;, ¢ is the angle the post-collisional trajectory makes with
the normal to 0B; and M; = 0B; % [—%, g} . In these coordinates, the collisionmap T : M — M
preserve a smooth invariant probability measure uggrp given by dusgs = (2|0Q|) ™! cos ¢ drdep.

We now define the sets where T" and its iterates are discontinuous. Let Sp := {(r,¢) € M |

|| = 7/2} denote the set of grazing collisions. For each nonzero n € N, let

n
Sin = JTF'S,
i=0
denote the singularity set for 7+, It would be natural to study the map T restricted to the
invariant set M \ UpczS, where T is continuous, however the set of curves U,czS, is dense
in M [13, Lemma 4.55]. We thus introduce the classical family of partitions of M as follows.
For k, n > 0, let M™_ denote the partition of M ~\ (S_; US,) into its maximal connected
components. Note that all elements of M"™, are open sets on which T" is continuous, for all
—k < ¢ < n. Since the thermodynamic sums over elements of M{j of a potential g will play a
key role in the estimates on the norms of the iterates of the transfer operator £, in Section
it should be natural — by analogy to the case of continuous maps — to define the topological
pressure from these sums.

Another natural family of partitions is defined as follows. Let P denote the partition of M
into maximal connected components on which both 7" and 7~! are continuous. Define P" P =
\/?’:_ e T ~iP and remark that 7" is continuous on each element of P i for all —k <7 < n.

The interior of each element of P corresponds to precisely one element of M!,, but its
refinements P", may also contain some isolated points — this happens if three or more scatterers
have a common grazing collision. These partitions already appeared in the work of Baladi and
Demers, where they proved [3, Lemma 3.2] that the number of isolated points in P, grows
linearly in n + k.

Finally, denote P . the collection of interior of elements of P",. In [3| Lemma 3.3], Baladi

and Demers proved that ﬁﬁk = M’f,il, for all n, £ > 0. It should be natural that the
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topological pressures obtained from these three families of partitions coincide. This is the
content of Theorem 2,11

In order to formulate the result on the equivalence between definitions of topological pressure
for T', we need to be more specific about the definition of piecewise Holder.

We say that a function g is (M}, a)-Hélder, 0 < a < 1, if g is a-Holder continuous on each
element of the partition M. We define the C® norm |g|ce to be the maximum of the usual
C® norms |g|ca(a), for A € M{, that is

g\r)—g\y
glon = max{lglooca) + H3(9) | A€ M}, where H(g) = sup 12 —910)]
z,y€A d(x, y)
Similarly, we say that a function g is M{-continuous if g is bounded and continuous on each
element of the partition M. We define the C” norm |g|co to be the maximum of the usual
C norms |g|co(ay, over A € My, that is |g|co = max{[g|co(a) | A € Mg}

Theorem 2.1. Let g: M — R be a potential bounded from above. Then

1
p = lim ~log 3 (Sng)(x)
*(T,g) ’ n£+oo n log AePr 216126
0

exists and is called the (topological) pressure of g. Moreover, the map g — Pi(T,g) is convez.
When g s M(l)-contmuous and Py (T, g) —sup g > 0, the following limits exist and are equal
to P(T,g).
i lim 1log sup e(Sn9)(@) 1 lim 1log sup e(Sn9)(@)
¥ n—r+oo " Aez7:561 T€EA (i) n—-+oo Aez/\:/lg T€A

Furthermore, when g is also (M(l), a)-Hélder continuous, then the following limits are equal
to P.(T,g).

" im 1 inf e(Sn9)(2) ' im L inf e(Sn9)(2)
(i) nhm —log GE g;gf e . (iv) nhm - log éwigf e ,
A 0
lim L1 inf e(Sn9)(z)
(v) lim S log eEMg infe

Finally, for a bounded potential, the sequence n — log > sup e(On-19)=) 45 subadditive.
AeMp z€A

Proposition 2.2. Let g be a M}-continuous potential. Let Pspan(T,g) and Psep(T, g) be the
pressure obtained using Bowen’s definition with, respectively, spanning sets and separating
sets. Then Papan(T,g) < Pu(T,g) and Puep(T, g) < Pu(T,g). When P.(T,g) —supg > 0, then
P(T,g) = Pwp(T, g), and if furthermore g is (M}, a)-Holder, then Pi(T,g) = Pspan(T, g)-

The proof of the last three forms of P, (T, g) in Theorem relies crucially on the following
lemma.

Lemma 2.3. For every (/\/l[l), a)-Holder continuous potential g there exists a constant Cy such
that for allm > 1 and all P € P,

sup eSnd < Cyinf eSn9.
P P

The estimate still holds, for the same constant C,, when Py is replaced by P",, 7521 or M",,
for any fized | > 0.
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Before the proofs of these results, we first recall that 7" is uniformly hyperbolic in the sense
that the cones

Y= {(d’l”, d‘P) € R2 | Kmin < d@/dT < Kmax + 1/7—min}a
C* = {(dT’ d(p) € IR'2 | —Kmin 2 d@/dr Z —Kmax — 1/7_min}v

are strictly invariant under DT and DT !, respectively, whenever these derivatives exist (see
[13]). Here Amax = max K, Kmin = min x, where & is the curvature of the scatterer boundaries,
and Ty = min7, where 7 is the return time function. Furthermore, there exists C; > 0 such
that for all n > 1,

1D T (v)[| = CLA™ o], Vo € €%, [ DT (0)]| = C1A[[v]], Vo € C*,

where A = 1 4 2KminTmin is the minimum hyperbolicity constant.

(2.1)

Proof of Lemma([2.3 Let d,, denote the n-th Bowen distance, that is the distance given by
— i, i
dn(z,y) = max d(T"z, T'y),

where d(z,y) is the Euclidean metric on each M;, with d(x,y) = 10D max; diam(M;) if = and
y belong to different M; (this definition ensure we have a compact set). Let eg > 0 be as in [3]
(3.3)], that is: if d,(z,y) < ¢ then = and y lie in the same element of M. Therefore, by the
uniform hyperbolicity of T, if d(T%(x), T%(y)) < e0/2 for all |i| < n then d(x,y) < C1A "eg/2.
Given a potential g, for all integers m, define the m-th variation by
Varn(g, T, ) = sup{lg(x) — g(v)| | d(T?z, T7y) < e, || < m}.
When g is (M, a)-Hélder, we get that Varm(g,T, 20-) < C(FA™™)®. Therefore

ZVarm(g, ' 20, ) = K < .

m=0

By uniform hyperbolicity of 7', there exists k. such that diam(./\/lﬁ;:) < g0/2C for all
n = k.. It then follows from the proof of [3] Lemma 3.5] that if  and y lie in the same element
of Pk5+" then d,(z,y) < €9/2C, for all n >

Let P € Pff" and let z, y € P. Let 0 < k < n. Then for all |j| < my = min(k,n — k),
d(Tj(Tk$)7Tj(Tky)) < £0/2C and so ]g(Tkx) - g(T’“y)! < Varp, (9,7, 5 20 ). Therefore
L5 ]1+1
[Sng() - <2 Z Vary (9.7, 55 ) < 2K < 0.

Now, let P € Pj for some n > 2k.. Notice that Py = \/;_ kkE T lPksk , in other words for all

I such that k. <1< n— k., T'P is included in an element of Pks Finally, by decomposing
each orbit into three parts, we get that for all x, y € P,

eSn9(@)=Sng(y) _ oSk 9(2) =Sk 9(Y) o Sn—2kc 9(T* )= Sp2p g (T e y) , Sk g(T" e 2) =Sy g(T™~*ey)
< ers(supg—infg) €2K

The claim holds for n > 2k. by taking the sup over x and the inf over y in P. Since there are
only finitely many values of n to correct for, by taking a larger constant, the claimed estimate
holds for all n > 1.
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Fix some [ > 0. Since an element P € P, is contained in a unique P € P, we get that
l 0

sup en9 < sup eSn9 < Cinf 59 < Cinf 59,
P p P P

Now, assume that p # (). Then, by the continuity of Spg on P, the estimate also holds
when the sup and the inf are taken over P. In other words, the claim is true for all P € 77”

Since by [3, Lemma 3.3], 73” M"l 1» the claim is true for all P € M",, for fixed [ > 1. We

finish the proof with the case P € MJ. Remark that letting A € M",, then T~'A € MJT!.
Therefore

e~ SUpd sup eI +19 sup e +1979 — qup ™9 < Clnfe g — 1nf eSn+1979

-1A —14 A 1A
< C’e infg inf eSn+19,
T-1A
Only in this last case, we need to replace C' by CesP9-infs > . Il
Proof of Theorem[2.1]. Let p, = 3. supel®9@) Then, for k > n,
AcPl z€A
Pn+k = Z sup e(Sng)($)+(Skg)(Tnx) < P Dk-
Bnoepy \ T-npk TEBNC

Therefore (logpy,)n, is a sub-additive sequence. It is then classical that %log pn, converges to
1I;f1 % log pp,, hence Py (T, g) exists. We now prove the statement about convexity. Let g; and
nz

g2 be two potentials bounded from above and p € [0,1]. Using the Holder inequality, we get

I—p
Z sup eP Sng1+(1-p)Sngz < ( Z sup eSng1) ( Z SU.p 6Sn92> . Yn>1.

Aepp A AePp AePp

Taking the appropriate limits, we get that P.(T, pg1 +(1—p)g2) < pPu(T, g1)+(1—p) P (T, g2),
hence the claimed convexity.
For (i), consider p, = 3 supel®9@ 1In [3] Lemma 3.2], Baladi and Demers proved that
Aepy €A
#{A € P} | A= 0} grows at most linearly. Hence, using the smoothness of g for the last
equality

P = Z sup e(Sn9)(@) < CpensuwPy 4 Z sup e(Sn9)(@) — o ensupy + P
AEPp T€EA AePy T€EA
A=p

Since py, is submultiplicative, p, > ¢™*(19). Now, from the assumption P.(T,g) —supg > 0,

we must have liminf,, % log pn, = Pi(T, g). Finally, since p,, < pp, (% log pr)n converges to the
same limit as (1 log py,), does.
For (ii), we use [3, Lemma 3.3] that P§ = M"T'. Hence

Z sup e(Sn+19)(@) ¢ Z sup e(Sn+19)(@) Z sup e(5n9 @) gup 9@,

Aepmptt P4 Aemrtt T4 acpy "4 eM
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Furthermore, since M" 11 = MIT1\/ M, each element of MJ*! contains at most #M°,
elements of M’f{l. Hence

1
(Snt19)(@) > E (Sng)(@) g9(x)
sup e Yy ) 21613 e $1é1f eI\,

cA -
Aemptt” AePp

Point (i23) (resp. (iv), (v)) follows directly from the definition of P.(T, g) (resp. from point
(i), (#)) and from Lemma [2.3[since for all A in P} (resp. P§, Mp)

inf 579 < sup en9 < Cyinf 9.
A A A

For the final claim, we prove that log pepn SUPP e5n9 is subadditive. Take P a nonempty

element of ’P{Hm It is the interior of an intersection of elements of the form 77 A; for some
Aj e P, for j=1,...,n+m. This is equal to the intersection of the interiors of T_jAj. But
since P is nonempty, none of the 77 Aj has empty interior, and so none of the A; has empty
interior. Thus the interiors of A; are in P. Now, splitting the intersection of the first n sets

from the last m, we see that the intersection of the first n sets forms an element of 771” For
the last m sets, we can factor out 7T~" at the price of making the set slightly bigger:

int(T""JA_,_;) C T "(int(T7(A_p—j))), 1<j<m

where int denotes the interior of a set. Thus

n m
> supeSnd < N suplet T @) [z e (YTIANTT (T4}

- P . A ;
pepyt™ A_;eP j=1 g=1
1<g<n+m
n m
< Z sup{e’"9(z) |z € ﬂ T77A_;} Z sup{e9(z) | z € m T77A_;}
A7j675 Jj=1 Aij'fD Jj=1
1<i<n 1<j<m
< Z sup 9 Z sup e°m9
< p ~ P
Pepy Pepp

Taking logs, the sequence is subadditive. And then so is the sequence with Mg in place of
Pt O
Proof of Proposition[2.3 We first prove the claim about separating sets. Let ¢ > 0 and let k.
be large enough so that diamS(Mgks_l) < CAF= < ¢1e for some constant ¢ to be defined
later. Therefore diam“(./\/lflgjfl) < CA™* < ¢ie for all n > k.. By the uniform transversality
between the stable and the unstable cones, we can choose ¢; such that diam(M’f,gj_l) < ¢ for
alln > k..

Let E be (n,e)-separated, for some n > k.. It is shown in the proof of [3, Lemma 3.4] that
if x,y € F are distinct, then they cannot be contained in the same element of Pﬁi" Thus

DS < N e oy = D (59T o) < REPITIID) R Skt .

zcE AG,PEE]C;}:—TL AEPOQkE+n AGngs+n
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Therefore nli_)r{:o%log sup{d ,cp e%9() | Eis (n,e)-separated} < P.(T,g), and this for any
e > 0. Taking the limit ¢ — 0, we get Pscp(T, g) < Pi(T\ g).

For the reverse inequality, assume that g is such that P.(T,g) —supg > 0. From the proof
of [3l Lemma 3.4], there exists 9 > 0 such that for all € < g, any set F which contains only
one point per element of M is (n, e)-separated. For all A € M, there exists z € A such that
eSn9(@) > 1% sup 4 579, Let E be the collection of such z. Thus

9
Sn T Sn
DI = S T (e o)

zelR AeMy

Therefore hm Llogsup{ > €9 @) | Eis (n,e)-separated} > P,(T,g), and this for any 0 <
zeE
£ < gp. Taklng the limit ¢ — 0, we get Piep(T, g) = Pi(T, g), thus the claimed equality.

We now prove the claim concerning spanning sets. Let € > 0 and let k. be such that
diam(./\/lﬁ;j_l) < ¢ for all n > k.. Let F be a set containing one point in each element of

PEE. From the proof of [3, Lemma 3.5], F' is (n,¢)-spanning. Since

Z Sng(x) < ghe(supg—infg) Z |€SQkE+"g|CO(A)

xeF AGPQkE +n

we get that hm Lloginf{}" e Sn9(®@) | Fis (n,e)-spanning} < Pi(T,g), and thus for all

e>0. Taklng the limit € — 0, we get Pspan(T, 9) < Pi(T\ g).

For the reverse inequality, assume that g is a (Mé, «)-Holder potential such that P.(T, g) —
supg > 0. Let € < g9 and let F' be a (n,e)-spanning set. By the proof of [3, Lemma 3.5], each
element of Mg contains at least one element of F. Thus > _p eon9(®) > EAGMQ inf 4 579,

Taking the appropriate limits, we get that Pspan (T, g) = Py (T, g), thus the claimed equality. [

2.1. Easy Direction of the Variational Principle for the Pressure. Recall that given
a T-invariant probability measure y and a finite measurable partition A of M, the entropy of
A with respect to u is defined by H,(A) = — > 4 4 #(A)log pu(A), and the entropy of T with

respect to A is by (T, A) = lim, o0 2 H, (\/?;01 T_i.A).
Lemma 2.4. Let o : M — R be a measurable function. Then
P(T,¢) > P(T,¢) = sup{h,(T) + /cpd,u | pis a T-invariant Borel probability measure}

Proof. Let p be a T-invariant probability measure on M. Notice that P is a generator for
T since \/;2_ TP separates points in M. Thus h,(T) = h,(T,P) (see for example [33|

Theorem 4.17]). Then,
( 11(A) log (A / Snep du)
0

< lim > M(A)(sglp(Sncp) —logp(A)) < lim L1og > supen? < Pu(T, ).

n—soo N
AePy Aepp A

where we used [33, Lemma 9.9] for the second inequality. O
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2.2. Abramov Formula and Choice of the Potential g. In order to obtain the existence
of MME for the billiard flow, we use the Abramov formula to relate equilibrium measure for T'
and some potential g, to the MME of the flow. First, we need the following (classical) lemma.

Lemma 2.5. Let ¢ be a bounded non-negative measurable function such that ¢o == inf{ [ pdu |
Typ = p} > 0. Then, there exists a unique real number c, such that P(T, —c,p) = 0.

Proof. We first prove that the function ¢ — P(T,ty) is increasing. Let € > 0 and ¢; < to.
There exists a T-invariant probability measure p; such that

P(T,t10) < hy (T) + 1 / odun +2 < P(Tota9) — (2 — )0 + <.

By this computation, we also get that lim; 4. P(T,tp) = +o00 .

Now we prove that ¢t — P(T,ty) is continuous. Let ¢ > 0 and ¢ € R. By the previous
computation, we get that ey < P(T, (t+¢)p)— P(T,tp). Let pus be such that P(T, (t+¢)p) <
hu,(T) + (t +¢€) [ odus + €. Thus P(T, (t + €)¢) — P(T,tp) < £(1 + supy). Therefore
t — P(T,typ) is (strictly) increasing and continuous, so it must vanish at exactly one point,
noted —c,. g

We can now use this lemma with the Abramov formula to get the following

Corollary 2.6. Equilibrium measures of T under the potential —hiop(¢1)T and MME of the
billiard flow (seen as a suspension flow) are in one-to-one correspondence through the bijection
W o = ﬁ,u ® A, where X\ is the Lebesgue measure.

Proof. Since T = Tmin > 0, the assumption of Lemma [2.5]is satisfied for ¢ = 7. Let ¢ be the
constant given by Lemma such that 0 = P(T, —c7). Then, for every equilibrium state m
of T under the potential —c7, we get

Ozhm(T)—c/Tdm2hH(T)—c/Tdu,

for all T-invariant measure u. Thus

c = hm(T> > h#(T)
[ Tdm - Jrdp

Now, by the Abramov formula, ¢ = Ay, (¢1) = hy, (¢1). In other words, m, is a MME for the
billiard flow. Furthermore, since ¢; is a continuous map of a compact metric space, by [33]
Theorem 8.6], we get that hiop(¢1) = sup{hu(P1) | (¢1)«pt = p}. Thus ¢ = hiop(P1).

To prove that the map is onto, we use that any ¢s-invariant probability measure . must
be of the form ﬁu ® A, for some T-invariant probability measure pu. Thus, reversing the
above computations, we get that if p, is a MME, then p is an equilibrium state for T" under
the potential —hiop(¢1)T. O

Therefore, proving the existence and uniqueness of the MME for the billiard flow is equiv-
alent to proving the existence and uniqueness of the equilibrium state of 7' under the po-
tential g = —heop(¢1)7. Notice that in the second case, g is (Mg, 3)-Holder continuous and
the condition P,(T,g) — supg > 0 from Theorem is realised since P.(T,g) — supg >
P(Ta _htop(¢1)7—) + htop(¢1)7—min > 0.
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Remark 2.7. Using similar arguments as in Corollary we can relate the equilibrium states
of ¢; under the (measurable) potential g : Q@ — R to the ones of T" under g = A(g) — P(¢1,9)T,
where A(g) : M — R is given by

7(x)
AG) (@) = /0 3(n(a)) .

3. GROWTH LEMMA AND FRAGMENTATION LEMMAS

This section contains technical lemmas used throughout the rest of this paper, as well as
the precise definition of the conditions SSP.1 and SSP.2. The first condition will be used to
prove the “Lasota—Yorke” bounds on the transfer operator £, in Proposition as well as the
lower bound on the spectral radius in Theorem while SSP.2 will be crucial for the absolute
continuity (Corollary used to prove statistical properties (Propositions and and
to compute the pressure (Corollary. The first lemma (Lemma controls the growth in
complexity of the iterates of a stable curve, with a weight g, whereas the subsequent lemmas
are used both to obtain Proposition [3.10] - claiming that the thermodynamic sums grow at an
exact exponential rate — and to prove that some potentials satisfy the SSP.1 and SSP.2.

In order to state the results from this section, we need to introduce a certain class of curves,
as well as a mean to decompose them into manageable pieces.

First, denote by W?* the set of all nontrivial smooth connected subsets W of stable manifolds
for T' so that W has length at most Jp (to be determined latter). Such curves have curvature
bounded above by a fixed constant [I3, Prop. 4.29]. Thus T~'W$ = W?, up to subdivision of
curves. We define W* similarly from unstable manifolds of T

Now, recalling the stable and unstable cones , we define the set of cone-stable curves
W containing smooth curves whose tangent vectors all lie in C*, with length at most g and
curvature bounded above/\so that T~V C W , up to subdivision of curves. We define a set
of cone-unstable curves W* similarly. These sets of curves will be relevant since S, and S_j,
are composed of curves in W$ and )7\/\", respectively. Obviously, W* C Ws.

For 6 € (0,600] and W € W, let G(W) :== {W}. For n > 1, define the d-scaled subdivision
GJ(W) inductively as the collection of smooth components of T—*(W') for W' € G° (W),
where elements longer than ¢ are subdivided to have length between §/2 and §. Thus G2(W) C
W for each n and Uvegsw)U = T7"W. Moreover, if W € W#, then GO(W) c We.

Denote by L8 (W) those elements of G3(W) having length at least §/3 (the long curves),
SS(W) :== G3(W) ~ LS (W) (the short curves), and define Z3 (W) to comprise those elements
U € G3(W) for which T'U is contained in an element of S? (W) for all 0 <i < n — 1.

A fundamental fact [14, Lemma 5.2] we will use is that the growth in complexity for the
billiard is at most linear:

34 K >0 such that V n > 0, the number of curves in S4,, that intersect

3.1
(3.1) at a single point is at most Kn.

3.1. Growth Lemma.

Lemma 3.1. For any m € N, there ezists 59 = do(m) € (0,1) such that for all W € We, if
|W| < 09, then for all 0 < 1< 2m, T—'W comprises at most Km + 1 connected components.
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Furthermore, for any ¢ € (0,0¢], the d-scaled subdivisions satisfy the following estimates: for
alln > 1, all v € [0,00), all W € W*, and all M}-continuous potential g, we have

I
a) Z < Og’W> ‘e ng’CO(WZ) ((nVno)so+1)'y+1(Km+ 1)n/m nsup g

WieZy (W) log “/VZ‘
1 Y
b) Z <10g||3//||> |€Sng|CO(W¢) < min { 205 12((nVno)so+1)y Z |€Sng|CO(A)
wiegsw)y OB AeMy

n
22'y+106—1 Z 2(]’\/n0)sofy(Km + 1)j/m6j sup g Z ‘BSn_jg|CO(A)
3=1 Aemy™?
where (n V ng) = max(n, ng).
Moreover, if |W| > 6/2, then both factors 20TV can be replaced by 27.

Proof By [13, Exercise 4.50], there exist constants dcyr > 0 and C > 1 such that for all
W € W* with [W| < - dc, then |T='W| < C|W|'/2. Notice also that there exists A, == A;(pp)
such that for W € W* with T-'W N {lo] > wo} = 0, then |[T71W| < A|W|. We want to
combine these bounds to estimate |7~ "W|.

Let 0 € (0,0cMm], W € W* with |W| < 6, and W; € Z3(W). Let V C W corresponding to
W;, that is V- = T"W;. Thus, for all 1<j<n, we have |[T—7V| = |T"TW;| < §/3.

We can decompose V = |_| 10 araz Y |_| such that: for all ig € Iy, T~'V?

ioelo JO exp 10,graz
{‘90’ 900} and thus ’T 1‘/12 graz’ C’ i0 graz’1/2 and for all jo € Jo, T 1‘/](()) exp - {‘30’ < 800}7
and thus |7~ 1‘/](()) expl < A1V, exp] We can perform the same decomposition for each V0, graz
or Vj%exp instead of V:
zo,graz |_| Vzi Zg(iraz |_| lel Zeoxp ’ ]076XP |_| V“Jg(;az |_| Vﬂli;;(p
1 1

We iterate these decompositions until having a decomposition of T~V = W;. Notice that
since the stable curves T~V have length at most §/3 < dcy/3 and are uniformly transverse
to Sp, they can cross {|¢| = ¢o} at most B times, where B > 0 is a constant uniform in W.
Thus, at each step of the decomposition, a curve is split into at most 2B pieces.

Thus W; =TV =, ,, Vo o091 where * € {graz, exp}, oy, € I U Jg, and the union
is made of at most (2B)" elements we can estimate the length.

Consider first the case n < ng. By definition, sg is such that so = sup,, n% 220261 Lfjp|>p0} ©
T* < 1. Thus, for each V,.%"“"~! there are at most song indices oy, € I;. Hence

(Van S =1 L C2ATO|V 270", Therefore

(3.2)
(Wil = [TV < @B) C2AT VI < OW PP YW, € (W), n < no, 6 < dow
Now, consider the case n = kng + [, for ¥k > 1 and 0 < [ < ng. By construction, if

W; € Ty(W), then T'W; € W) € T}, (W) and T"W] C W/*' € I),_, | (W) for all
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0 < j < k—1. Thus, we can iterate (3.2):
|W1’ < CNv’WQ|2*$0"0 < C’Zinzo Q*mSO"O‘Wij|2*J'SO"O < C?QIW‘Q’

(k+1)sgng

and so |[W;| < C?|W|>™° for all W; € T3(W), n > no and all W € WS with W1 < dcm-
Therefore, if § < min(C~2,dcyr), we have

~ v
log |W| v log 02 ( +1) 5

. < (20" 11— L 2\, el ,

(3.3) (longi) log | W] VWi € (W)

since |W;| < §. In the case |W| > §/2, since 6 < 2, we can directly obtain that the ration of
logs is bounded by 27.
(a) Let m > 1 and W € W* with [W| < 8 <min(C~2,8cy). First, we want to estimate the
number of smooth components of T~'W, for 0 < [ < 2m. The problem is the same as knowing
the number of connected components of W N S_;. Now, by (3.1), at most Kl curves in S_;
can intersect at a given point. Since W and S_; are uniformly transverse, for each 0 <1 < 2m
there exists d(;y such that if [W| < ¢y then W \S_; has at most KI+1 connected components.
Let 50 = IHIH{CS(Z) | 0< l < 277’L}

Let n > 1, d € (0, 50] and W € W* with |W| < 6. We want to estimate #Z2°(W). We prove
by 1nduct10n that # jm( ) < (Km+1)7. For j = 1, this follows from the choice of §y. Since
elements of I@H)m(W) are of the form V € Z% (W;) for W; € I]‘-sm(W), we have

#Ljenym(W) < (Bm + DHEL (W) < (Km 4177
Now for estimating #7; m+l(W) < I < m, we only need to modify the last step:

HL (W) < (K (m+1) + DHL (W) < 2(Km +1)7.
Therefore, #Z%(W) < 2(Km + 1)™™, for all n > 1. Combining this estimate with ( and
en9 L e"SUPY | we obtain (a).
(b) Let § < dp, and W € W* with (W[ < 6. We start by estimating > . cgs ) |eS"9|CO(WZ.).
Since the boundary of elements of M is contained in S_;, by uniform transversality, each
element of MY is crossed at most one time by W. Thus, each element of M is crossed at
most one time by T "W. Now, since the diameter of elements of M} is bounded uniformly

in n by some constant C, there can be no more than 2C5~! elements of G3(W) in a single
element of M{}. Thus

(3.4) > e 0wy <2057 D €9 coga
W;€G3 (W) AeMy
First, in the case |W| > §/2, the estimate

log [W] S
2 <1og|W"> %9 coqw,y <267 Y T [e5aoqa),
Wi€G3 (W) ! AeMp

is enough for what we need.
Now, assume that |W| < §/2. Let Fy(W) denote those V € G¢(W) whose length is at least
0/2. Inductively, define F;(W), for 2 < j < n — 1, to contain those V' € gg(W) whose length
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is at least 0/2, and such that T*V is contained in an element of g;s_k(W) N F;_(W) for any
1 <k <j—1. Thus F;(W) contains elements of g?(W) that are “long for the first time” at
time j.

We gather the W; € GS(W) according to their “first long ancestors” as follows. We say W;
has first long ancestorﬂ VeF;(W)forl1<j<n-—1ifT"IW,; CV. Note that such a j and
V' are unique for each W; if they exist. If no such j and V exist, then W; has been forever
short and so must belong to ZJ(W). Denote by A,_;(V) the set of W; € G3(W) whose first
long ancestor is V' € F;(W), that is

A (V) = {W; € GX(W) | T"W; C V}.
By construction, we thus have the partition
G (W |_| |_| An
: FJ

Therefore

log [W[\" g,
2 <1og|Wi|> [ leowy

Wiegg(W)
log |W| 2 log W[\ .

- Z 2 <log|Wi’> ooy + 2 (10g’Wi| ™ lovawy
JI=IVieF;(W) WieAn—;(V) Wi €Ln (W)

n—1

log [W[\" s, log VI \7 s._,
< 79 n—39g ,
ZVE;W)<108§|VZ‘> |€ |CO(VZ)W.€AX:'(V log|Wz| ’6 |CO(W7,)
i n—j l)

+ 2((n\/no)so+1)W(Km + 1)n/mensupg

< tlosl log [W[\"” Sig Sng
Z > gy ) ¢ levany Y e eoa

Jj=1VieF;(W) AGMS*J’

+ 2((nVno)so+1)’Y(Km + 1)n/men sup g

n
< 2Ty " 2lVn)soY (Fom, 4 1)1/ med S N eS| gy
j=1 AeMy™?

where we have applied part (a) from time 1 to time j and the first estimate in part (b) from
time j to time n, since each |V;| > §/2. O

3.2. Fragmentation Lemmas. Until now, we have only used mild assumptions on a given
potential g. Here, we introduce the conditions of Small Singular Pressure (SSP.1 and SSP.2),
which are crucial for the estimates given in the lemmas from this subsection. These estimates
will be used in Section leading to a precise growth rate of the thermodynamic sums. We
also prove that there exist potentials satisfying simultaneously SSP.1 and SSP.2.

2Note that “ancestor” refers to the backwards dynamics mapping W to W;.
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In what follows, we will always assume that P,(T, g) —sup g > sglog2 and choose some gy
accordingly: Let m be large enough so that % log(Km + 1) < Pu(T, g) — sup g — solog 2, and
let 5o = dp(m) be as in Lemma Notice that m, and therefore also dy, depend on g.

We start by giving the definition of SSP.1. First, we have to introduce some notations.

Let L%(M?Y ) denote the elements of M°  whose unstable diametelﬂ is at least ¢/3, for
some & € (0,80]. Similarly, let L(Mp) denote the elements of M whose stable diameter is
at least §/3. Recall that the boundary of the partition formed by Mg is comprised of stable
curves belonging to S, = U7_T' —iSy C We.

Define

lo(g.0) =inf{ Y (5 coy | W € WS, § < [W| <),
VGL;SL(W)

and its “time reversal” £} (g,d) similarly by replacing W* with )7\/\“, T with T-! and g with
goT! (that is S,g with S, g = S goT " =S8,g0 T_n)ﬁ

Definition 3.2 (SSP.1). A potential g such that P.(T,g) —supg > solog?2 is said to have
e-SSP.1 (small singular pressure), for some e > 0, if

(3.5) there exist 6 = 6(e) € (0,80] and n1 € N such that
Z(S |65"9|CO(WZ~) Ly
ML) > =2 o YW e WS with [W] = 6/3
> |eoogw,y T 1-e¢
W,€GS (W)
(3.6) the sequences (€"S"P9 15 (g,8) Vpsn, and (e"5"P9 L% (g,6) ) pusn, are summable,

and the “time reversal” of (3.5)) holdﬂ Notice that (3.5)) (resp. its time reversal) implies that
02 (g,9) (resp. £:(g,0)) is nonzero for all n > nj.
A potential is said to have SSP.1 if it has e-SSP.1 for some ¢ < 1/4.

The following lemma bootstraps from Lemma [3.1] and will be crucial to get the lower bound
on the spectral radius:

Lemma 3.3. If g is a (M}, a)-Hélder potential such that P(T,g) —supg > splog2 and
log A > sup g —inf g, then g satisfies (3.5)), as well as its time reversal, for all € > 0.

Proof. Fix e > 0. Choose nj so large that GCCl_lnl (Knq +1)emupg—infg—logh) o where C
is the constant from Lemma [2.3|and C} is such that |77"W| > C1A™|W| whenever W € W*.

Next, choose ¢ > 0 sufficiently small that if W € W* with |W| < ¢, then T~"W comprises at
most Kn + 1 smooth pieces of length at most dy for all 0 < n < 2n;.

3Recall that the unstable diameter of a set is the length of the longest unstable curve contained in that set.

4Actually, this is equivalent to simply replace g by the (M}, a)-Hélder potential g o Z o T', where Z(r, @) =
(r,—p). Notice that since Z o T™ acts like a permutation on Mg, we have Py (T, g) = P.(T,goZoT).

5Here again, by time reversal of we mean the same estimate but replacing 7 with 771, W? with W*
and g with go T~ (that is S,g with S,,'g). Here also, this is equivalent to just replace g by goZ o T.
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Let W € W* with |W| > 0/3. We shall prove the following equivalent inequality for n > ny:
> €5 oo
WiGSQ(W) £

< :
> leS9fcow,y T 1—e
W, eGS (W)

(3.7)

For n > nl, write n = kny + [ for some 0 < | < n;. If & = 1, the above inequality is
clear since S’n 41(W) contains at most K (n; + 1) + 1 components by assumption on ¢ and n1,
while [T—™~ IW\ > Ci AT W] > C1A™ T3 /3. Thus G2 (W) must contain at least C1A™*/3

curves since each has length at most §. Thus,

Z ’esng|CO(Wi)

Wi €S8 (W) K(ny+1) +1elmthsupg . o (st g—inf g—log A

< < 1(sup g—inf g—log A)
3 \65"9|00(Wi) <3 CiAm+l e(mtl)infg = 6C) (Kny +1)e <,
W;eGd (W)

where the last inequality holds by choice of n;.

For k > 1, we split n = kny +1, 0 < I < nyg, into k — 1 blocks of length n; and the last
block of length ny + 1. For each V € GS(W) ~ Z3(W), let j < n be the greatest integer such
that 7"~7V is contained in an element V,, of L?(W) and for all j < i < n, T""*V is contained
in an element of Sf(W). We call V,, the most recent long ancestor of V and j its age. If such
a j does not exist, it means that for all i < n, T"~*V is short, that is V € Ig(W) and we set
4 =0 in this case.

We group elements of S (W) by their age in [(j — 1)ni,jny — 1], 1 < j < k— 1, and
[(k — 1)n1,n — 1]. In other words, we consider the following partition

kE—2 [ (¢+1)ni1—1

n—1
(3.8) SSw) = | | ] || z,0n)|u | ] | ]

q=0 J=qni VeLy(W) j=(k=1)n1 VeLi(W)

We can therefore split the left hand side of (3.7) into two manageable parts. For this, we rely
on Lemma [3.1] for v = 0 and the fact that

gw)> || G(V), Yo<j<n.

VeLy(w)
Thus, using Lemma [2.3] we have

k—2 (¢+1)n1—1

Z > 2 > €59 coa > %oy D €519 coawn

k—2 (g+1)n1—1

J=qn1 VeL} (W) WieZ_ (V) VeLy(w) WieZ)_ (V)
< E E — —
> ,esng‘co (W) = LS e gg\co S e(n—j)infyg
Wi€Gy, (W) VeLé(W) W €gy_;(v)

k—2 k—2 k
ZGCC nl(Kn1+1)k qg(k=g)n (sup g—infg—logA) Zek q _qu.
9=0 q=0 q=2
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Similarly, for the second part we have

n—1

> > > 1% ooqwy

> 150y Y €9 cogy

n—1

j=(k=1)n1 VeL(W) W;€Z_ (V) VeL(W) WieZd (V)
<Y e
> |59 co ) i—eym© > €990y Y elrmi)infg
WGy, (W) VeL (W) Wiegl_ (V)

< 600;1711 (Kn1 + 1)6n1(supg—infg—log/\) <e.

Summing these two estimates, we obtain ([3.7)).
The time reversal is obtained from the same proof by changing the construction of the set

G3(W) (and thus LS (W), SS(W) and Z3(W)) so that elements of GJ(W) are contained in
T"W (instead of T~"W) for W € W". O

Notice that if e < 1/4 and §; < dp and ny are the corresponding § and n; from the e-SSP.1
condition, then we have for all W € W# with [W| > ¢;/3 and n > n;

2
(3.9) Z €59 oy = 3 Z 1€579| cogw
WL’ (W) WieGal (W)

In particular, since G (W) = LS (W) LI S31 (W), we also get that
Z |€Sng’CO(Wi) 22 Z |€S"9100(Wi) .
WieL (W) WSt (W)
The following lemma will be used to get both lower and upper bounds on the spectral radius
via Proposition

Lemma 3.4. Let g be a (M}, a)-Hélder potential such that P.(T,g) —supg > solog2 and
which has SSP.1. Let §1 and ny be the corresponding parameters associated with SSP.1. Then
there exist Cp, > 0 and na = ny such that for all n > na,

(3.10)
—1 —1
Z |eS" g|CO(A) > Ch, 01 Z |€Sn g|C°(A) and Z ‘eS"g|CO(A) 2 Cp, 01 Z |esng|CO(A)‘
AeLit (MO ) AeM?, AeL (M) AEMS

Furthermore, if g is a (M}, a)-Hélder potential with P.(T,g) —supg > solog?2 and log A >
sup g — inf g, then g has SSP.1.

Proof. We prove the lower bound for L% (Mp). The lower bound for L% (M%) then follows
by time reversal. First, we need to define sets that will be relevant only here. Let

I (Mg) = {A e Mg | diam®(A) < 61/3}
be the complement of L3 (Mp) in MR, and
I,(T778y) = {unstable curves in 7~7(Sy) with length less than &;/3}.

Define also Ls(T~78y) as the complement of I4(T7Sp) in g?l (So)-
We will deduce the claim by estimating the sum of norms of e%»9 over I, (M§) by the one
over L1 (MP). To do so, we estimate the sum over I,(M@) with the sums over I,(T7Sp).
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Then, using we estimate the sum over I4(T7Sy) with sums over Ls(T7Sp). Finally, we
estimate sums over Ls(T7Sy) with a sum over L3 (M) and treat some troublesome terms.
In order to estimate the sum over I3(Mg), first remark that if A € M then 0A C S, =
Uj=o T798y. Let A € I;(M3). We distinguish two cases:
(a) For some 1 < j < n, OA contains a point of intersection between two curves of T77S.
Since such intersection point is the image by T77*! of an intersection point between curves
of T718, which are finite, and thanks to the linear complexity , we get that there are at
most Kon elements of I,(Mg) in this case.
(b) OA only contains intersection points between curves belonging to T/ Sy for different j. Let
ja be the maximal 1 < j < n such that ANT /Sy # (), and v € T~948; such that yN A # ().
Notice that v must intersect other curves from 9A. These curves belong to 7778, for some
j < ja. Applying 77, it appears that v must terminate at these intersection points, and thus
v C QA. Since 7 is a stable curve, 7 belongs to I5(T~74Sy) by assumption on A. Finally, such
a curve v belong to at most 2 elements of I;(MJ).
Therefore

n
B1) D 1™ looiy S K™ CY D e oyawy + 1™ lco ),
Aels(ME) J=1Wel,(T-18)

where we have extended e»9 by Holder continuity to W from both sides — and noted |- \Cg)r W)
and | - [co 1y the corresponding norms — and C' is the constant from Lemma

In order to use (3.5)), we decompose Sy = |_|i°:1 U; where each U; is a connected curve such
that %1 < |T7'U;| < 1. But first we need to compare the sum indexed by I(T7/Sy) with the
one indexed by I (Q51 (U;)). Let W € I,(T~78y). Thus, each W NT~7U; is a single maximal

smooth component of length less than §1/3. In other words, W N T—IU; € Is(g](-sl_l(Ui)).
Therefore

Sn Sn
1 S g <Y e
Wel,(T—180) =1 We[s(g -10;))
Now, using SSP.1 (3.5)), in the case j > n1, we get that
1 (s .
(3.13) Z ‘esng’cﬁ(W) < 5,e(n j+1)supg Z IGSJflg’Ci(W)'
WeL(G5L (T-1Uy)) WeLL(GL(T-1U)))
In order to estimate this last sum with the sum indexed by Ls(gil_l(T ~1U;)), notice that
Ls(G,1 (T71U3)) 2 | Ls(G,"; (V).
VELL(G;L, (T-1Uy))

Thus

Sn Sp_ig+SigoT™ I
> €™ cq wy = > Z €292 g vy

WELy(G,1 ,(T-1U)) WELL(G)L, (T=1Uy)) VELS(G- (W)
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—2 inf S._ Sp_i
>C e > 0wy D 1 oy
WeLs(g;‘sll(TilUi)) VGLs(gil_j(W))
> C_Qemfgffz—j(g»51) Z |6’Sj_lg|cg(W)7

WeLs(G)1,(T-1Uy))

where we used Lemma for the second inequality, and the definition of £;_;(g,d1) for the
third inequality. Notice however that (3.5)) ensures that ¢ _ j(g, 01) # 0 only forn—j > n;. We
will treat these troublesome j afterwards. Assume for now that ny < 7 < n — n;. Combining

the above lower bound with (3.12)) and (3.13)), we get

(3.14) > 1oy S Ce o (g 007t YT €™ og s
Wels(T—i8) WELs(T—"So)

where we used that |_|£,0:1 Ls(gj‘?l_l(TflUi)) C Lg(T778y) — which is true if we choose the
81-scaling G1(T778p) to be adapted with the decomposition Sy = ||, U;.
Now, if n —ny < j < n, then we obtain from similar computations

(3.15)

1 . .
Do [ egary < GOPMITTIIIROE (g.5) T YT [y
WeL(T~980) WEL,(I™47"15)

Finally, we estimate the sum over Lg(T~"Sp) with the sum over LJ!(Mp). We proceed
similarly as for : Let W € Lgs(T™"Sp). We distinguish the two following cases:
(a) W intersects another curve from 77 "Sy. There are at most 2Ky elements of Ls(T~"Sy)
in this case,
(b) W does not intersect other curves from 77"Sy. In that case, W must be contained in the
boundary of an element of Mg, and thus an element of L% (MZ). Now, there are at most
206, elements of Ls(T~"Sp) in the boundary of a single element of L% (MP), where C is a
large enough constant depending only on the billiard table.

Thus

(3.16) Do 1oy < 2Kae™ I+ O5TE Y €9 o).
WEL(T~"Sp) AeLgl(M(’})

Similarly, for all n —n; < 7 < n,

(317) Z ‘65"1+jg|0§)[(w) < 2K2€(n1+j)sng+C(51_1 Z |€S"1+jg’CO(A).
WEL(T-™1-18) AeL (M)
Putting together (3.11)), (3.14) and (3.16)), as well as (3.15)) and (3.17)), we get
ni—1
Sh Sn Sn
> 1oy < Kane™PI 4 C Y Y e o wy + e co
A€L, (M) J=1 Wel,(T—180)
n—nj n
Sn Sn Sn Sn
+CY D 1Mooy + 1€ o )y +C Y > 1€ 00wy + ¥ co

Jj=n1 Wels(T—180) j=n—n1+1Wels(T—38p)
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n—ni

< (Ko + Cpy )9+ C >~ ™93 (g, 60)7 Y €%l co wy + €59 co )
j=m WeL.(T-180)

n
+C Y elmswogs (g,6,)7! > |€Sj+"1g’cg(vv) + €59 co )
j=n—ny+1 WeLy(T—-"180)

< (Kan+ Cp)e™™ 9 4+ C | 2K P9 0570 Y (€59 o
ALt (MD)

n
+ Z c,.C 2 Kpelmti)supg 4 ooyt Z \65j+n1g|00(,4) ’
j=n—-ni+1 Aerlt (Mé+"l)

where in the last inequality we used and the fact that n — ny +1 < j < n is equivalent
to 0 < n—j < np—1, that is, in the second sum over j after the second inequality symbol,
the e("=7)s%9 are uniformly bounded (by Cy)-

We now relate the sum over L! (M%er) to the sum over L9 (M7). To do so, notice that if
A € LI (MP), then it contains at most BIt"1~" elements of L9 (M}™), where B = |P|. On

the other hand, an element A’ € LI (M?™) is contained in exactly one element of L% (MR).
Thus

> €59 co(4) = > > eI co

AeLlt (M)t AeL (M) Are Lt (MD)
AcCA’
< > > ooy < D0 > e oo
AeLS (MY Are L% (M) A€’ (M) AeLi (MmItT)
AcA’ AcA’
o s,

< Bitmi—ngnisupg Z €519 o),

ALt (Mp)

and therefore,

n n
> D N 7 D DI A S W e e
j=n—-ni1+1 AELgl (Mé+7bo) j=n—-nmi+1 AeL‘Zl (./\/lg)
n
j+n1—n _nisu n—7)inf S, ~ S,
< Z RBit+ni—nnisupg,(n—j)infg Z l€59] o4y < Chy Z €79 0o 4)-
j=n—ni+1 ALt (Mp) ALt (Mp)

Using this last estimate, we obtain

Z |€S"g|co(A) < (KQTL + C’nl + Crlzl C;KQ)ensupg + (CC + C;zlc;énl)éfl Z |€Sng’00(A),
AT, (M3) AEL (M)
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< C1e™PI 4 Cyo7 ! |e5n9|
<O 207 CO(A)>
ALt (Mp)

where C is a constant coming from the summability assumption (3.6)), and C,,, depends only
on nq and g.
Finally, since Is(M§) U L3 (MP) = M, we get that
> €59 cocay — CresuPI
Sng AEM?
Do 1o >

AL (M)

1+ Gyt

Since limy, 400 = log ZAEM(; \eS"9|CO(A) = P.(T,g) and by the assumption P,(T,g) > supg,
there is an integer ny such that for all n > no,

1
> 1 on = O3 5 T (e o
AEM? AEM?
Thus, there exists Cp,, > 0 such that for all n > ngy (3.10]) holds.

We now prove the second part of Lemma Assume that g is a (M}, a)-Hélder potential
with Py (T, g) —sup g > splog 2 and log A > sup g —inf g. From the convexity of the topological
pressure (Theorem , we get that ¢t — Py(T,tg) is a convex function. Thus, the map
t— P (T,t(g—supg)) = Pu(T,tg) — tsup g is continuous on [0, 1]. Since for all s < ¢ we have

Z ]eS"t(g_sng)|CO(A) < et—s)sup(g—supg) Z ‘eSnS(g—supg)‘CO(A) — Z ’eSnS(g—Supg)‘CO(A)’
AEMp AEMp AEMp
the map is nonincreasing. Thus
P.(T,g) —supg = P.(T,g —supg) < P.(T,0) = h,,

where h, is the topological entropy of T from [3]. Therefore we have h, > splog2 and estimates
from [3] can be used. For all W € W?* with §; > |W| > 01/3 and all n > ny,

S 165 Jonqyy 2 eI L (W) >

en infg#gzl (W) > 2006” infg#Mg > 2606n(inf g+P«(T,0))
~3 3
VeLS (W)

Wl o

where we used [3, Lemma 5.2] for the second inequality, and Propositions 4.6 and 5.5 from [3]
in the third inequalityﬁ

Thus we get that £5(g,01) > %coe”(inf9+P*(T70)). Sinc P.(T,0) = h, > log A, we then get
the summability of the sequence (€"S"P9/% (g, 81) 1) p>n,. The summability of e SU"PILY% (g, §1)~ !
is obtained similarly by considering lower bounds on # L1 (W), also given in [3]. O

We now introduce the precise definition of SSP.2:

6We can choose the scale &, from [3] to agree with the one here. The constant cg comes from [3, Proposi-
tion 5.5] and depends on ;.

7log A is a lower bound on the unstable Lyapunov exponent of T'. Integrating against usrp gives the desired
inequality.
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Definition 3.5 (SSP.2). A potential g is said to have e-SSP.2 if it has e-SSP.1, if there exists
n1 : (0,4+00) = N such that

> e coawy

W, LS (W) 1—3e — _
3.18 > , YW ®, Vn z n([W]),
( ) S ’esng‘CO(Wi) 1—¢ €W?, Vn = m(|W])
W,€G3 (W)

and if the time reversaﬁ of (3.18) holds, where § is the corresponding constant from e-SSP.1.
A potential is said to have SSP.2 if it has e-SSP.2 for some ¢ < 1/4.

Corollary 3.6. If g is a (M}, «)-Hélder potential such that P(T,g) —supg > solog2 and
log A > supg — inf g, then there exists Cy > 0 such that g has e-SSP.2 for all ¢ > 0 and

ni(|W]) = C’inw, where § and ny are the corresponding constants from Lemma .

Proof. From the Lemmas and such a potential has SSP.1. We thus only prove .

The proof is similar the one for Lemma except that for curves shorter than §/3 one
must wait n < |log(|W]/8)] for at least one component of G2(W) to belong to LS (W).

More precisely, fix € > 0 and the corresponding é and n; from Lemma Let W € W* with
[W| < /3 and take n > n;. Decomposing G2(W) and S%(W) as in the proof of Lemma
we estimate the second part as before. For the first part, we have to split the sum between
T2(W) and the rest, which is estimated as before.

For the first part, concerning Z3 (W), for § sufficiently small, notice that since the flow is
continuous, either #G(W) < Kl + 1 by or at least one element of G?(W) has length
at least 0/3. Let ny denote the first iterate I at which G?(W) contains at least one element
of length more than §/3. By the complexity estimate and the fact that |[T-"2W| >
C1A™|W| by hyperbolicity of T, there exists Cs > 0, independent of W € Ws , such that
na < Cy|log([W|/9)].

Now, for n > ng,

Z |€Sng|CO(WZ~) < Z ‘eSngg‘Co(W,) Z |€S"7"29|CO(WZ~)
WiET5 (W) W/EGs, (W) Wi€T]_,, (W)

n—ng

n—n

< K(Kng +1)e™%P9 x 2(Kny + 1) o e(n—n2)supg
and by hyperbolicity and Lemma |2.3
Z ’esng‘CO(Wi) > o ‘65"29‘00(1/{//) Z e(n—ng) infg > %Clc—leng infge(n—n2)(inf g+log A)
WieGS (W) Wi€Gh_,, (W)

where W’ € G5 (W) is such that |W’| > §/3. Therefore,

> e oo

Wi €Zs (W) - < 60;106n2(supg—infg)K(Kn2 + 1)(Kn1 + 1)%e(n—ng)(supg—infg—logA)
> eI coawmy
W;eGg (W)

< 2061026”2(Supg_infg)K(Kng + 1)5”/”1.

8As for (3.5)), we call time reversal of (3.18) the same estimate but with W* replaced by W*, T by T~" and
g by goT ™" (that is S, g replaced by S,, " g).
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Since ny < Ca|log(|]W|/§)|, we can bound this expression by ¢ by choosing some Cy > 0 and

n large enough so that n/n; > 02%. For such n, the left hand side of (3.7)) is bounded

by e + 152 < 12—_56, which completes the proof of the corollary.
As usual, the time reversal of (3.18)) is obtained by performing the same proof, but with
the time reversal counterpart of G (W), for unstable curves W. g

3.3. Exact Exponential Growth of Thermodynamic Sums — Cantor Rectangles. It
follows from the submultiplicativity in the characterisation of Py (7', g) (Theorem that

PT9) < minte Y up 590 vy s 1,
Aemy T€A

In this subsection, we shall prove a supermultiplicativity statement (Lemma from which
we deduce the upper bound for ZAGMSL SUDP,c A e(5n9)(*) in Proposition giving the upper
bound in Proposition and ultimately the upper bound on the spectral radius of £, on B.
The following key estimate gives the reverse inequality of , for stable curves that are
not to short, thus linking thermodynamic sums over curves and partitions. The proof will
crucially use the fact that the SRB measure is mixing in order to bootstrap from SSP.1.

Proposition 3.7. Let g be a (M}, a)-Hélder potential with Py(T,g) —supg > solog2 and
which has SSP.1. Let 61 be the value of § from the condition SSP.1. Then there exists ¢y > 0
such that for all W € W# with |W| > 61/3 and n > 1, we have

-1
Do ooy z o D 1% eoga)-
Wi€G20 (W) Aem?,

The constant cy depends on d1.

The proof relies crucially on the notion of Cantor rectangles. We introduce this notion as
in [3 Definition 5.7]. Let W#(z) and W*(z) denote the maximal smooth components of the
local stable and unstable manifolds of x € M.

Definition 3.8. A solid rectangle D in M is a closed connected set whose boundary comprises
precisely four nontrivial curves: two (segments of) stable manifolds and two (segments of)
unstable manifolds. Given a solid rectangle D, the (locally mazimal) Cantor rectangle R in D is
formed by taking the points in D whose local stable and unstable manifolds completely cross D.
Cantor rectangles have a natural product structure: for any x, y € R, then W*(z)NW*"(y) € R.
In [13, Section 7.11], Cantor rectangles are proved to be closed, and thus contain their outer
boundaries, which are contained in the boundary of D. With a slight abuse, we will call these
pairs of stable and unstable manifolds the stable and unstable boundaries of R. In this case,
we denote D by D(R) to emphasize that it is the smallest solid rectangle containing R.

Proof of Proposition[3.7, Using [13, Lemma 7.87], we may cover M by Cantor rectangles
Ry, ..., Ry, satisfying

, my« (W (x) N Ry) .
3.19 f >09, VI<i<k,
(3.19) 2R, my« (W(z) N D(R;)) !

whose stable and unstable boundaries have lengths at most %61, with the property that any
stable curve of length at least §1/3 properly crosses at least one of them. A stable curve
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W € W* is said to properly cross R if W crosses both unstable sides of R, W does not cross
any stable manifolds W#(x) N D(R) for x € R, and the point W NW*(x) subdivides the curve
W"(z) N D(R) in a ratio between 0.1 and 0.9 (i.e. W does not come to close to either stable
boundary of R). The cardinality k is fixed, depending only on dj.

Recall that L% (M) denotes the elements of M, whose unstable diameter is longer than
01/3. We claim that for all n € N, at least one R; is fully crossed in the unstable direction by
each element in a subset L of M such that

-1 1 -1
(3.20) > 1e¥ oy = Z > 1% I ooga
AeL AELY (MO,,)

Notice that if A € M2, , then DA is comprised of unstable curves belonging to U T"S,, and
possibly Sp. By definition of unstable manifolds, 7%Sy cannot intersect the unstable boundaries
of the R;; thus if AN R; # (), then either A terminates inside R; or A fully crosses R;. Thus
elements of L1 (M) fully cross at least one R; and so at least one R; must be fully crossed
by a large fraction L of L% (MY,) in the sense of , proving the claim.

For each n € N, denote by i, the index of a rectangle R;, which is fully crossed by a large
enough subset L, of L,(M2,), in the sense of .

Fix §, € (0,61/10) and for i = 1,...k, choose a “high density” subset R} C R; satisfying
the following conditions: R} has a non-zero Lebesgue measure, and for any unstable manifold
W* such that W* N R # (0 and |[W"| < §,, we have W > 0.9. (Such a J, and
R} exist due to the fact that my «-almost every y € R; is a Lebesgue density point of the
set W*(y) N R; and the unstable foliation is absolutely continuous with respect to ugrp or,
equivalently, Lebesgue.)

Due to the mixing property of usgrp and the finiteness of the number of rectangles R;, there
exist € > 0 and n3 € N such that for all 1 <4,j < k and all n > n3, pspp(R; NT"R;) > €.
If necessary, we increase ng so that the unstable diameter of the set T~"R; is less than J, for
each 7, and n > n3.

Now let W € W# with [W| > 61/3 be arbitrary. Let R; be a Cantor rectangle that is properly
crossed by W. Let n € N and let i), be as above. By mixing, usr(R; NT~"R;) > e. By [13,
Lemma 7.90], there is a component of T7"3W that fully crosses R; in the stable direction.

Call this component V € G%(W). Thus

1 . ~1 1 -
Z lesng‘co(wi) _ Z |€Sn g’CO(TnWi) > Z njf|65n 9| > o Z sgp\esn 9|
Wi€Gi0 (V) Wi€Gp0 (V) A€Ln " Acn

1 _1
> > e Yooy
Y aerli(mo )

We now have to relate the lhs to the analogous quantity where V' is replace by W.

§ § : Z €579 co )
|€S7Lg’CO(W_) = 5 i
' V 0 Hr Tn3v g
Wieng(W) Vjegg(l"g(w) WiGQfLO(W) #{ i€ gn+n3( ) ‘ i C W }

Tm3V;CW;
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n 1
D D e PR 5

. Tng B f
Vi€G 00y (W) wiegioqr) 7 1V € Gk (W T2V < Wi
T3V, CW;
050 —masu C(SO —n3su
Sy v > et rateon) > gV > e ooy
Vi€0)5 ., (W) V€050 (v)
Cdo —ng(sup g—in 1 Cdo —ng(sup g—in -
> FMEC sewginta) Ves"g|c°(vj>>ﬁ#/vl"3e et > 1 e
0 o g 0 851 440
€GO (V) AeLS (MO)
L Cdo  _py(supg—int Syt
> Cnlélk—cg#Mgge 3(sup g—inf g) Z e 9] coa):

AeMO

for all n > max{ng, n3}, where we used Lemmafor the last inequality. Thus the proposition
holds for all n > max{ng,n3}. It extends to all n € N since there are finitely many values of
n to correct for. O

Lemma 3.9 (Supermultiplicativity). There exists a constant c¢; such that for alln € N, and
all 0 < j < n, we have

s S s
€5 coay = et Y 1€ coay > 1€ oy
AeMy Aemy™ AeM},

Proof. Fix n,j € N with j < n. First, notice that

. —1 J g —1
Z |€Sng|CD(A) 2 Z Supe(sn—]g+sj g)oT' > Z Supesn—]glgfesj g

AEMg AEMg AemM™I
S . . ¢ S7lg Sp—j S;tlg
> ) swpe i 3 mfen 0>Cy ) [ ooy D 1€ oo
AeMg™? BeM® AemMg™ BeM®;
BNA#£) BNAZ£D
Spj S:'g
>Cy Y 5oy Y 1% o),
AeM’gij BGMgJ
BNA#D

where we used Lemma [2.3 for the forth inequality.
Recall that L9 (M(ij) denotes the elements of M% ; whose unstable diameter is longer than

61/3. Similarly, L% (Mg ) denotes those elements of Mgij whose stable diameter is larger
than d;/3. By Lemma

> e oy = Cuydy D €% ogay,  for n—j > ny.
AL (MPT) AempI

Let A€ L) (/\/lg_j) and let V4 € W* be a stable curve in A with length at least &;/3. By

Proposition
) -1
Yo ooy Ze0 Y 1€ lcop).
WL'EQ?O(VA) BeM?;
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Each component of Q’;SO(VA) corresponds to one component of V4~ S_; (up to subdivision of

long pieces in Q?O(VA)). Thus

i S,ﬁl n—j S'il
Yoo ooy o 1€ Yooy = YL e ooy Y € ooy

Aemi—I Beﬁfﬁé AL (MJTT) Wi€G20 (Va)
BN
Sn—j S; S S1lg
> Y 1oy Y 1€ oy = C Y (€5 coay D 1€ o),
AeLI (My™7) Wi€G20 (Va) Aemg™? BeM?,

proving the lemma with ¢; = cOCmCQ(Sl when n — j > no. For n — j < no, since

> e oy < [ Y 190y

Aemy™ AeMg

n—j

the lemma holds by decreasing c¢; since there are only finitely many values to correct for. [

Proposition 3.10 (Exact Exponential Growth). Let g be a (M}, a)-Hélder continuous po-
tential such that P.(T,g) —supg > 0 and which has SSP.1. Let ¢ be the constant given by
Lemma(3.9. Then for all n € N, we have

2
Z ’esng|CO(A) < 7€TLP*(T’9)'
AEME “

Proof. Let 1p(n) = e P>(T9) ZAGMEL |eS”9\CO(A). Suppose there exists n; € IN such that
¥(ny) = 2/c1, where ¢ is the constant from Lemma Then

v2m) > env(m)? = - (erd(m),

Iterating this bound, we obtain for any k& > 1,

k

v(2m) > (e (m)

This implies that limy_, ;oo -5 - log 1 (2¥ny) > n% log2 > 0, which contradicts the definition of

2kn

¥(n) (since limy 4o +logtp(n) = 0). We conclude that ¢(n) < 2/c¢; for all n > 1. O

Remark 3.11. Notice that for g = 0, the condition Py (T, g) —supg > solog2 becomes h, >
s log 2, where h, is the topological entropy of T defined in [3]. This is precisely the condition of
sparse recurrence to singularities from [3], and as discussed there, we don’t know any example
of billiard table not satisfying this condition. Notice that by continuity, if h, > sglog 2 holds,
then P, (T, g) —supg > solog2 holds for all g in a neighbourhood of the zero potential. Up to
taking a smaller neighbourhood,log A > sup g —inf g also holds. Therefore, by Lemmas
and Corollary there exists a neighbourhood of g = 0 (in the (M}, a)-Hdlder topology) in
which every potential has SSP.1 and SSP.2. In particular, for any ¢ € R with |¢| close enough
to zero, the potential —t7 has SSP.1 and SSP.2.
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3.4. Estimates on norms of the potential. In Section [6] we will need similar estimates
as in the present section but with the C° norm replaced by the C® norm, 0 < 8 < 1/3. The
following lemma shows that previous estimates are still valid up to a multiplicative constant.

Lemma 3.12. For every bounded (M}, o)-Hélder continuous potential g, there exists C > 0
such that for all W € W*, alln >0 and all W; € GS(W), |65"9|CQ(W2.) < C’\eS”9|CO(Wi), where
0 € (O,éoy

Proof. Let g be such a potential. Let ¢ be such that g > ¢. Let W; € G(W). Then

n—1 n—1
_goTk 18, 5 e
Hiy (e59) <Y e 9T 59 oy Hiy (9 0 TF) < 19 cory D e “CA™¥|glcaany
prn =0

1
Sin -
< e g\cO(Wi)Cl —Aaf “l9lcaan

where for the second inequality we adapted the argument from [3, eq (6.2)], so that

g(T*z) — g(T*y) dy (T z, Thy)"
dw (TFz, TFy)*  dw(z,y)*

< CH oy, (9|7 T G0y < CA*glca ).

4. THE BANACH SPACES B AND B,, AND THE TRANSFER OPERATORS L,

In Section @ we construct the equilibrium state py for 7" under the potential g out of left
and right eigenvectors, 7 and v, of a transfer operator £, associated with the billiard map and
the potential g, acting on suitable Banach spaces B and B, of anisotropic distributions. In
this section, we define these Banach spaces B and B,, as well as the transfer operator L,.

4.1. Motivation and heuristics. The spaces B and B,, are the same as in [3], but we recall
their construction not only for completeness, but also to introduce notations. The norms we
introduce below are defined by integrating along stable manifolds in W?*. We define precisely
the notion of distance dyys(+,-) between such curves as well as a distance d(-, -) defined among
functions supported on these curves.

In the setup of uniform hyperbolic dynamic, the relevant transfer operator to study equi-
librium states associated to a potential g — see for example [I] — can be defined on measurable

function f by
f _
Lyf = <€g T oT!

where J*T is the stable Jacobian of T'. Ignoring first the low regularity of J*T', we see from
the hyperbolicity of T that the composition with 7! should increase the regularity of f in
the unstable direction, while decreasing the regularity in the stable direction. By integrating
along stable manifold against the arclength measure, we hope to recover some regularity along
the stable manifold — notice that by a change of variable, J*T does disappear. Morally, the
weak norm | - |, and the strong stable norm || - ||s measure the regularity of the averaged
action of £,. On the other hand, the strong unstable norm || - ||,, captures the regularity when
passing from a stable manifold to another one. Here, this regularity should be thought of as
a log-scaled Holder regularity.
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4.2. Definition of the Banach spaces and embeddings into distribution. Recall that
W?# denote the set of all nontrivial connected subsets W of length at most g of stable manifolds
for T. Such curves have bounded curvature above by fixed constant [I3, Prop. 4.29]. Thus
T='W?* = W?, up to subdivision of curves. Obviously, W* C W5, We define W similarly
from unstable manifolds of 7'

Given a curve W € W?*, we denote by my the unnormalized Lebesgue (arclength) measure
on W, so that |W| = my (W). Since the stable cone C* is bounded away from the
vertical, we may view each stable manifolds W € W* as the graph of a function ¢y (r) of the
arclength coordinate r ranging over some interval Iy, that is

W ={Gw(r) = (r,pw(r)) [ 7 € Iw}.

Given two curves Wy, Wy € W? we may use this representation to define a “distance”ﬂ between
them. Define

dyys(Wi, Wa) = |IW1 AIVV2| + |90W1 - ‘)OW2|C’1(IW1|’1[W2)

if Iy, N Iy, # 0, and dyys (W7, Wa) = 400 otherwise.
Similarly, given two test functions 17 on Wi, and 19 on Ws, we define a distance between
them by

d(p1,92) = [t1 0 Gw, — P2 0 Gwalco(ry, niys,) »

whenever dyys (Wi, Wa) is finite, and d(i1,2) = +00 otherwise.

We can now introduce the norms used to define the spaces B and B,. These norms will
depend on the constants ¢y > 0 and dp € (0,1), as well as on four positive real numbers «, 3,
~v and ¢ so that

0<fB<a<min{l/3,a,}, 1<2%7 <PT9=swg <<y
where g is a given, bounded (Mg, ay)-Holder potential such that P, (T, g) — sup g > solog 2.

Remark 4.1. The condition o < 1/3 is needed for [3, Lemma 4.4], which is used to prove
the embedding into distributions. The number 1/3 comes from the regularity of the density
function of the conditional measures in the disintegration of usgpp against the stable foliation.
The bound a < a4 will be needed to verify that some functions involving g are C'*. The upper
bound on ~ arises from the use of the growth lemma [3.1] The dependence on ¢y comes from
the definition of W¥.

For f € C'(M), define the weak norm of f by

|flw = sup sup /Wf¢dmw.

Wews ¢eC*(W)
[Y|cewy<1

Similarly, define the strong stable norm of f by@

Ifl= sup s [ pudm,
wews heCB (W) w
9Actuaully7 dys is not a metric since it does not satisfies the triangle inequality. It is nonetheless sufficient
for our purpose to produce a usable notion of a distance between stable manifolds.

10The Jogarithmic modulus of continuity in || f]|s is used to obtain a finite spectral radius.
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(note that |f|, < max{l,|logdp|™ 7} f|ls). Finally, for ¢ € (0,7), define the strong unstable
normE| of f by

[fllu=sup  sup sup  |loge[*
e<eg Wi ,WoeWs P, eC*(W;)
dyys (W1:W2)<5 W’i‘CO‘(Wi)gl

£ by dmuy, — / £ b iy,
Wi Wa

d(¥1,32)=0
In order to use functional analysis results, we need to work with complete spaces. Since
CY(M) is not complete for the normﬂ |+ |w and || - ||s + || - ||, we will use the corresponding

completed spaces.

Definition 4.2 (The Banach spaces). The space By, is the completion of C1(M) with respect
to the weak norm | - |, while B is the completion of C*(M) with respect to the strong norm,
l-1lB8=1"lls+ 1 - |lu Notice that since |- |, < || - ||B, there is a canonical map B — By,.

Since the main purpose of the spaces B and B, is to contain left and right eigenvectors of
a transfer operator acting on those spaces, a crucial feature of B and B,, is that we can see
them as subspaces of the distributional space (C'(M))*. From this property, we will be able
to construct a positive distribution by pairing the left and right eigenvectors, and to extend it
into the desired equilibrium measure. First, we need to introduce some other spaces, on which
the transfer operator will be naturally defined (and then extended to B and By,).

Define the usual homogeneity strips

T 1 7T 1
]Hk::{(nSO)GMz‘!2—1{:2§<P<2—(k+1)2}7 k> ko,

and analogously for k < —kg. Define W§; C W? as the set of stable manifolds W € W? such
that 7" lies in a single homogeneity strip for all n > 0. We write ¢ € C*(Wy,) if ¢ € CY(W)
for all W € Wy, with uniformly bounded Hélder norm. The norm of ¢ in C*(Wy,) is defined
to be the sup over all the C*(W) norms, with W ranging in W,. Similarly, define the space
C& (W5, containing the functions ¢ such that ¢ cos o € C“(Wy;). The norm of ¢ in C& ((W§;)
is defined to be the norm of v cos ¢ in C*(W};). Clearly, C*“(Wj};) C C&OWV5)-

The canonical map B, — (F)* (for F = CY(M), or F = C*(W%)) is understood in the
following sense: for f € B,,, there exists Cy < oo such that letting f,, € C1(M) be a sequence
converging to f in the B, norm, for every f € F the following limit exists

f@) = lim / Futd dpisen

n——+o0o

and satisfies | f(¢)] < Cy||9|| 7.
We summarize the properties of these Banach spaces obtained in [3] in the next proposition.

Proposition 4.3. The spaces B, and B are such that:
(i) The following canonical maps are all continuous

CHM) = B — By — (C*WH)* — (CH(M))*,

HUThe logarithmic modulus of continuity appears in || f||. because of the logarithmic modulus of continuity
in ||f||s- Its presence in ||f]|. causes the loss of the spectral gap.

12For example, the sequence ((r7 ) = %sin 27rn2‘r—’”_|> is a Cauchy sequence of C''(M) functions with

respect to | - |, but diverges in the C'-norm.
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and the first two maps are injective. In particular, we also have the two injective and contin-
UoUS Maps

(Bw)* — B* = (CY(M))*.
(ii) The inclusion map B < By, is compact.

Proof. The point (i) is the content of [3, Proposition 4.2]. We detail the proof of the injectivity
of the map B — B,,. To do so, we prove that the formula defining | - |, (respectively || - ||s
and || - ||) can be extended when f € B,, (respectively f € B), and that it coincides with the
norm of f.

First, notice that when f € C'(M), then for given W € W?* and ¢ € C*(W) we have
Jw fodmw <|flwlYlcey. Thus f— [y, fibdmw can be extended uniquely to By.

Now, let f € By, € > 0 and f, be a Cauchy sequence of C'!(M) functions converging to
f in By,. Thus, there exists some n. such that for all n > ng, |f — folw < e. Let W € W*
and ¢ € CYW) with [¢|caqyy < 1. By definition of [fy[, for all n, there exist W, and
Yo € CY(W,,) with [¢hn]cew,) < 1 such that
<e.

‘/ fatn den - |fn‘w
Whn

Thus, we have

Jibn dmw, _/ fotpn dmw, | < |f — fn‘w‘wnba(wn) <e& Yn 2 ne,
Wn

)

and 50 [|fulu = fiy, fién iy,

< 2¢. In particular, we get

sup  sup / fodmwy > |flw.
wews ypeco(w) Jw

[Y]cewy<1

We now prove the reverse inequality. Using the same notations as above, there exist V € W?*
and ¢ € C%(V) with [p|gayy < 1 such that

/f@dﬂw— sup sup /fwdmw <e.
Vv w

WEWs peCe (W)
[Y]ca <1

Now, since

g’f_fn|w<57 vn>n€7

/ansodmv—/vfsodmv

we have that | supyycyys Sup yecaw) [y f ¥ dmw — [i, fap dmy| < 2e for all large enough n.

[Ylca )<l
In particular

sup  sup / F o dm < |fulo + 2.
Wews gpecow) Jw
[¥lcamn<l

Taking the limit in n, we get the claimed inequality.



32 JEROME CARRAND

The corresponding results for f € B and norms || - ||s and || - ||, are obtained similarly,
noticing that for all f € C1(M),

/W b dmw <1 fllsllcsw | og IWI1 7 < If||819|os wy | log W7, YW € W2, Wy € CP(W)

Thus the integrals against C#(W) functions in the definition of || - ||; makes sense even when
f € B. On the other hand, since |- |, < || - ||B, the integrals in the definition of || - ||, can be
extended to f € B as in the above case where f € B,,.

We can now show the injectivity of the canonical map B — B,,. Let f € B with ||f||z # 0.
If || f||s # 0, then the fact that |f], # O follows from the definition of C#(W) as the closure
of C1(W) in the C® norm, so that C*(W) is dense in C*(W). Now, if ||f||. # 0, then by
definition of || - ||, we can find some W € W* and ¢ € C*(W) so that [ fv dmy > 0. Thus

| flw # 0.
The point (ii) is precisely the content of [3, Proposition 6.1]. O

4.3. The transfer operators. We may define the transfer operator £, : (CS(Wg))* —
(C*(W?))*, for a given weight function g by
Lof () = f(e757), € CN).
This operator is well defined because, if ¢ € C*(W?) then e9 ¢oT € C*(W?*). Furthermore,

since J*T and cos ¢ are 1/3-log-Ho6lder on homogeneous stable manifolds, and cos¢/J*T is
bounded away from 0 and +oo also on homogeneous stable manifolds, we get that 1/J°T €

Co(W5). Thus e942L € Co (W3).
When f € C*(M), we identify f with the measurﬂ
(4.1) fusrs € (Coos(Wi))™ -

The measure above is (abusively) still denoted by f. For f € C'(M), we have

Ly(fpsrs) (W /f e’ @:f dpsrp Z/(egtéﬂ) o T~y dpsre = (( J{T> oT™ HSRB) (¥).

Thus, due to the identification (4.1)) we have Lyf = (e9f/J°T) o T~ as claimed above.

Proposition 4.4. For any fized (M(l], ag)-Holder potential g and associated spaces B and By,:

(i) If f € CY(M), then L,(f) € B.
(i) The operators Ly : (C1(M), | |w) = By and Ly : (C1(M), || - ||8) — B are continuous.
In particular, L, extends uniquely into operators on both B, and B.

Proof. The proof of (i) proceeds similarly as in its analogous result [4, Lemma 4.3] by intro-
ducing a mollification f,, € C1(M) of L,(f), where f € C1(M) and n > 0. As noticed in [4
Remark 4.11], the proof of [4, Lemma 4.3] can be adapted to the case g = 0. The modification
mainly relies on giving a nonhomogeneous version of [4, Lemma 4.9], which can easily be done
for a weaker — but sufficiently tight — upperbound. The corresponding bounds on |[L4(f)— fylls
and [|L,(f) — fyllu decrease to 0 as 7 goes to zero. Now, for any (M}, ay)-Hélder potential g,
one can use same techniques and decompositions to get the bound ||Ly(f) — fnlls < Cp.gn®s/C.
Concerning the unstable norm, we follow the modifications described in [4, Remark 4.11],

13T show the claimed inclusion just use that duspp = (216Q|) ™" cos p drdep.
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but distinguishing between the cases %/6 < |loge|=% and 7%/ > |loge|=2¢ (instead of
n'/6). In the first case, we obtain a bound ||Ly(f) — fyllu < Cfyn®e/'?, whereas in the sec-

ond case (in which e is superexponentially small in 1) we get an upperbound of the form
18+o¢g

Crgn~ 12 exp ( — min(a — 3, %)n_&> Therefore, both ||Ly(f) — fylls and [[L4(f) — fyllu
converge to 0 as 1 goes to zero.
Point (ii) follows from Proposition in the case n = 1. O

5. NORM ESTIMATES AND SPECTRAL RADIUS

The purpose of this section is to state and prove sharp upper and lower bounds on the norm
of the iterated operator Ly, both in B, and B.

Proposition 5.1. Let g be a (M}, a,)-Hélder continuous potential. Assume that P.(T,g) —
supg > sglog2 and that SSP.1 holds. Then there exist dg and C' > 0 such that for all f € B,

(5.1) L2 flw < Qenp*<T»9>|f|w, Yn>0;
do
n C n.
(5.2) 1£5flls < %e P*(T,g)HfHS7 Yn>0:
n C n.
(5.3) 1£4 fllu < %(Hfl\u + I flls)e” 9 vn=0.

It follows that the spectral radius of L4 on B and By, is at most el(T9),

Remark 5.2. It is possible to obtain similar estimates without the assumption SSP.1, however
an additional factor e appears on the right hand sides, for any arbitrary € > 0. We indicate
places in the proof where it happens and how to correct for it. The conclusion about the upper
bound of the spectral radius still holds. Nonetheless, in order to construct nontrivial maximal
eigenvectors, we will need the estimates from Proposition [5.1]

Theorem 5.3. Let g be a (M}, ay)-Hélder continuous potential. Assume that Pi(T,g) —
supg > solog2 and that SSP.1 holds. Then there exists C' such that

01 P (T
1£51]s = [Lg1]w 2 CEe" T9),

Proof of Proposition[5.1 Let 6y be the scale associated to g as in the beginning of Section 3.2}
The set W* is defined with respect to the scale dg.

We start with the weak norm estimate (5.1)). Let f € C'(M), W € W* and ¢ € C*(W) be
such that [¢)|ca(yy < 1. For n > 0 we use the definition of the weak norm on each W; € G5 (W)
to estimate

/W Lofpdmy = Y | fe 9o dmyw, < |flw Y. 1€ caqwyl¥oT o).
wieg 0wy Wi€G0 (W)
Clearly, sup |1 o T"|w, < supyy, |¢]. For x,y € W;, we have,

((T72) — ()| dw (T2, T"y)"

5.4
( ) dW(Tnx,Tny)a dW(:an)a

< Cllee )| I TEow,) < CA™ [ Ylcaw) ,
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so that Hyj, (o T") < CAT*"Hy, () and thus [¢) o T"|ga(w,) < CY|car). By Lemma
we get

. 2C
/ Ly fodmw < C|flwlt|camw) Z €579 co ) < | flwltlco Z €579 co(a),
W = 90 n
W, €G30 (W) AEMg

< - ML % 79)
< 6150|f\w|¢|c (we ,

where the second inequality uses that there are no more than 25, curves W; of G20 (W) per
element of M, and the third inequality uses the Exact Exponential Growth from Proposi-
tion [3.10f* Taking the appropriate sup over v» and W we obtain (5.1)).

Now we prove the strong stable norm estimate (5.2). We can choose m so large that
2507(Km + 1)V/m < eP(T9)=spd_ Let W e W, ¢ € CP(W) such that [t)|csy < |log |W]|7.
Then, by definition of the strong norm

[ gnsvamy = 30 [ oo mneSaamu, < 3 1 o T el sy 1og Wi~

WG (W) ' Wi€Gd (W)
log [W|\”
<alifle ¥ (=) 1€ oy
Wi€Gn0 (W) '

n
< C||f||8227+1561 ZQjSOV(Km + 1)j/m6j sup g Z |€S”_jg|CO(A)
J=1 Aemy™?

where for the last line we used Lemma [3.1(b) and Lemma Let

n
Dy i= €22+ 65 1N 29507 (K 1)/ med s N7 [eSni9 o 4.
j=1 Aemy™’

Let &1 = Pi(T, g) — sup g — log(2%7(Km + 1)'/™) > 0. Using Proposition we obtai

D, < 2271 C 3 T PTg) < gt L € aramg)

c1dp — 1—e¢1¢16g
j_

Combining this with the previous estimate and taking appropriate sup yield (5.2]).

Finally, we now prove the strong unstable norm estimate . Fix € < &g, and consider two
curves W1, W2 € W with dyys(W1, W?2) < & For n > 1, we recall how, as described in [3]
§ 6.2], T""W* is partitioned into “matched” pieces U f and “unmatched” pieces Vf ,=1,2.

More precisely, to each € T "w, where w is a connected component of W' ~ S_,,, we
associate a vertical line segment -, of length most CA™"¢ (so that its image T™7,, if not cut

Myithout the assumption SSP.1, Proposition might not hold. Still, for € > 0 and all n > 1,
ZAeMg \es"g|co(A) < C. e P (1949 hecause of the subadditivity from Theorem

15Here7 again, conclusion from Proposition can be replaced.
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by a singularity, has length at most C&). By [I3, § 4.4], we get that the T%~y, are made of
cone-unstable curves, and thus enjoy minimum expansion given by A.

Doing this for all such z, we partition of W'\ S_,, into countably many subintervals of
points for which 7™, intersects W2\ S_, (but not S_,), and subintervals of points for which
this is not the case. This induces a corresponding partition of W2\ S_,,.

Denote by V! € T~"W* the subintervals that are not matched. Note that the 7"V} occur
either at the endpoints of W* or because the vertical segment 7, cuts S,,. In both cases, due
to the uniform transversality of S_,, and C* with C*, one must have that |T"V/| < C&.

In the remaining subintervals the foliation {T™v;},cr-ny1 provides a one-to-one corre-
spondence between points in W' and W?2. We cut these subintervals into pieces such that
the lengths of their images under T~% are less than g for each 0 < i < n and the pieces are
pairwise matched by the foliation {~,}. We call these matched pieces U f C T~"W¥, such that
(5.5) 1t Ub = {Gun(r) = (r.pu (n) | 7 € I} then U2 = {Gya(r) = (r, pua(r) | r € T},
so that the point x = (r, YUl (r)) is associated with the point = (r, Y2 (r)) by the vertical
segment v, C {(7,8)}sc|—r/2,x/2, for each 7 € I;. Furthermore, since the stable cone is
bounded away from the vertical direction, we can adjust the elements of G2 (W) created
by artificial subdivisions (the ones due to length) so that U f - Wf and V,f C Wf for some
Wf, Wf € ggO(WZ) for all j,k > 1 and ¢ = 1,2, without changing the bounds on sums over
G (W*). There is at most one Uf and two Vf per W € Go(W?").

Thus we have the decompositions W* = (U]-T”Uf) U (UImvHh, £ =1,2.

Given v, on W* with Vel caqwey <1 and d(31,92) < €, we must estimate

(5.6)

£ Findm, = |23 fundmy,

/.

<M /V_l f, oT”eS’“‘gdm|

1i

+> / fib o T 9dm — / fabs oT”eS"gdm‘.
- Ul U?
J J J
First, we estimate the differences of matched pieces U]l-. The function ¢; = (¢ o Tme9) o

Gyt o G[;% is well defined on sz, and we can estimate each difference by
i i

<

fibr o T 9dm — / fiby o T 9dm
u;

/ fap o T™e“"9dm — / foidm
7y % v

_|_

|10 =m0 TS0 am

We bound the first term in equation (5.7]) using the strong unstable norm. We have that |Gy 0
J

Ga%]@ < Oy, for some Cy > 0 due to the fact that each curve U ]l has uniformly bounded cur-
j

vature and slopes bounded away from infinity. Thus [¢;|ca2) < CC’gW)l|Ca(W1)\eS"g|Ca(W1).
J
Moreover, d(i; o T"e%9, ¢;) = [1p1 0 T"e%9 0 Gy — ¢j 0 Gy2| = 0 by definition of ¢;. To
J J
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complete the bound on the first term, we use the following estimate from [18, Lemma 4.2]:
There exists C' > 0, independent of W' and W?2, such that

(5.8) dws (U, U7) < CA™"né =1, V.

Then, applying the definition of the strong unstable norm with ¢; instead of €

(5.9) Z

where we used Lemmas and (b) with v = 0 since there is at most one matched piece
U} corresponding to each component W} € GO (W) of T™"WL.
It remains to estimate the second term of ([5.7]) using the strong stable norm.

<28, CCyoger| ([ fllu D 1e%9]cocay,
AeMy

/ f¢1oT”eS”gdm—/ fojdm
Uj U?

|16 = a0 TS0 m

< |1 fls|log [UZ]] |5 — 42 0 T"65”9|06(U]2)-
In order to estimate this last C®-norm, we use that |GUJ2|01 < Cy and |G(;21]01 < Cy. Hence
J

|¢j — 120 Tnes"g|cﬁ(U]?) < C|(Yr 0T e59) 0 Gy — (20 T"e59) o Guzles(ry)
(5.10) <COl(Pro0T"o Gyt —aoT" o GUJ?)|CB(IJ-) ’es"g\CO(U].l)
+ C|@ZJ2|CO(U]2) |€S"g o GUjl — 9o GUJ.2|CB(IJ-)'
It follows from [18, Lemma 4.4] that
(Y101 0 Gy — a0 T" 0 Grez|es(ry) < ce*h,
Now, we need to estimate |59 o GUJ_I —eSn9 o GUJ? lcs(1;)- Since d(Ti(GUjl (r)), Ti(Gsz (r)) <
CA~(=Dg for all r € I; and 0 <@ < n, we get

Sng(GU} (r) Sng(Gsz? (T))_SnQ(GU]l (r)

€59 o GU; (r) — €9 o Gsz (r))=e

(5.11)
A% .
< 2\€S”g|CO(Uj1)’SnQ(GUj?(T)) - Sng(GUjl (r)] < 2Cm\9\0“9 (Ce) g|€sng\00(Uj1)

We estimate the S-Holder constant in two ways. First, using (5.11)) twice, we have for all
r, s € I; that

le%n9 o GU; (r) —e9 o GU]g(r) — 90 GUjl (5) +e 9o Gsz(S)! < 050‘9|65"9|CO(UJ;).
On the other hand, using that GU;; (r) and GU;;(S) lie on the same stable curve,
579 o GUjl (r) —e9 o Gsz (r) —e9 o GUjl (5) + €59 o GUJz(s)|
< €S9 o GUjl (r) —e59 o GUjl (5) + €9 o Gsz(s) — 590 Gsz @]
< 16579 ot d(Gin (1), Gyt (5))° -+ 1579 | my (G (1), Gl ()7

< C|eS"g\CO(Ujl)|7’ — 5|%.,
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Thus, this quantity constant is bounded by the min of the two estimates. This min is maximal
when the two upperbounds are equal, that is when & = C|r —s|. Therefore, dividing by |rr—s|?,
the S-Holder constant satisfies

Hi (59 0 Gt — €59 0 G2 ) < O£ P19 o)
Therefore, we have proved that
|9 o Gur — 9o Guzles(y) < Céag*'8|65"g|00(Uj1)-
Combining the above estimates inside , we finally have
[¢j — a0 T"63"9|06(U]2) < Céa_ﬁ\es"g’cowj) :
Summing over j yields

>

J

2f(¢j—¢20T”eS"g)dm < Clog dol [ £I:2°7P205 1 Y €50y,
Uj AeMy

where we used Lemma (b) with v = 0 since there is at most one matched piece U Jl corre-

sponding to each component W} € GO (W of T~"W!. Since dy < 1 is fixed, this completes
the estimate on the second term of (5.7)). Hence the contribution of matched pieces in (5.6|) is
controlled.

We now turn to the estimate of the first sum in (5.6 concerning the unmatched pieces.
We say an unmatched curve VZ-1 is created at time j, 1 < j < n, if j is the first time that

T"7V.! is not part of a matched element of Q?O(Wl). Indeed, there may be several curves V!
(in principle exponentially many in n — j) such that 7"~7V;! belongs to the same unmatched
element of g;?o (W1). Define

Ajr = {i | V}' is created at time j
and T"7V.! belongs to the unmatched curve Wl ¢ T7W!}.
Due to the uniform hyperbolicity of T', and, again, uniform transversality of S_, with the
stable cone and the one of C*(z) with C%(x), we have |W}| < CA7e.
Recall that from Lemma (a) for 4 = 0, if for a certain time ¢, every element of ggO(Wkl)

have length less than do/3 — that is, if ggO(Wkl) = IgO(Wkl) — then we have the subexponential
growth

(5.12) Z ’eng‘CO(V) < 2(Km + 1)/ medsupg
Vg (W)

We would like to establish a lower bound on the value of ¢ as a function of j.
More precisely, we want to find ¢(j), as large as possible, so that

] ]
(2) ‘gq?j)(’Wﬁl ) =Tty (We):
log |V||™7 s 1

This is the content of the next two lemmas.
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Lemma 5.4. If W € W* is such that C2W 270 < 50/3 for some k > 1, where C is the
constant from (3.2)). Then g,mo( ) = Ig%O(W), and for all 1 <1< k, and all W; € gmo( ),
Wil < 2w
Proof. We prove the lemma by induction on k. We start with the case k = 1. Let 1 <1 < ng
and W; € g (W). Denote V = T'W; C W. Then, for all 0 < j <1, |T?W;| < 6p. Decomposing
T~V = W; as in the beginning of the proof of Lemma we get that |[W;| < C|W[* "™,
Wthh is less than /3 by assumption. Thus, g (W) = SZO(W) for each 0 < 1 < nyp. Therefore
g;ig(W) = Iﬁ% (W), with the claimed estimate.
Consider now the case k > 1. Notice that, by construction, we have

G W)= U G

WiEG0 (W)

Thus, we can apply the same method to estimate the length of an element W; € Q,ﬁ%g (W)
. . 5 . . .
from the length of its parent in G (W), iterating the estimates as for (3.2). O

Lemma 5.5. The above conditions (a) and (b) are satisfied for q(j) = % 1, for

all j > j1, where j1 > jo = 0 are constants (uniform in & and W}). For j < ji, set q(j) = 0.
Proof. Since |[W}| < C&A™7 and using Lemma 4} the condition (a) will be satisfied whenever
C2(CEN)2 ™ < §y/3. Let jo be such that CA=% < 1. Then (a) is satisfied whenever
C2A~=000277 < 54/3, that is
. . C
log(j — jo) : 1 log %5~
< -C th Cy = .
s0 log 2 2 W 27 solog2 © log A
Note that Cy is uniform, and that the right-hand-side of - is larger than ¢(j) for all j
large enough, say j > ji. .
Using the estimate from Lemma condition (b) is satisfied whenever |log C2(CEA=7)2" |7 >
|log £|°. Now, we have that

(5.13)

- o - , 1 .
|log C*(CEA)?"| = |log C* 4+ 277 log(CEA )| > 5]2*’7 log(CEA™Y),
whenever
log(j — jo) . 1 log A
5.14 1< BV 7N 4 oo with Oy = 1 .
( ) 7t S0 log2 tCs, W 3 S0 log 2 OglogCQ
Note that C5 is uniform, and that the right-hand-side of - is larger than ¢(j) for all j
large enough, say j > 71 (up to increasing the value of ji).
We thus have to prove that |log CEA=7|7 > 2(4t1)7|log £|¢ (which implies (b)). Notice that,
from the definition of ¢(j), we have 2@+ < (j — jy)7~¢. We distinguish two cases.
Assume first that (j — jo) log A > |log£|. Therefore

20D log 1° < (j — o)~ |log 2 < (j — jo)" (log A)* < ((J — jo) log A)"
< (7 = jo)log A + |log €| + [log CA™7*|)T < | = (j — jo) log A + log & + log CA™%[?
< |log CEATI|.
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On the other hand, if (j — jo) log A < |logé|, then

, 1
20+ 10g 2¢ < (j — jo)' ¢ | log £[° < [log & <|log5|< |log &7

= (log A)1=¢
< | = (j — jo) log A + log & 4 log CA™|7 < |log CEA™I|".
Thus, the choice ¢(j) satisfies (a) and (b) for all j > j. 0

We next estimatﬂ over the unmatched pieces V; in (5.6)), using the strong stable norm.
Since cases [ = 1 and [ = 2 are similar here, we only deal with the case [ = 1.

HIDS

jlk’LeAk

/ fr o T 9dmy | =

/ . (Lo f)apy o TIe59
Tn— JV

ZZZ

J=1 kg NUs

(/;ijfq(j)f)wl o TI+409) Sita()9

l

a(j

<SS S IO £11,C og [Vl b © T | s 4 [€5909 |

j=1 k 1
Vegqm(W )

< C|Iflls Zie(n I=aP(T9)| 1og |~ Cz Z ‘esﬁq(j)gycﬁ(vz)

F vieg, (W

C i L 0TI 1S
Ton”sze(n J Q(J))P*(T’9)|logs| ¢ Z Z |€Sgg TQ(j)+S‘1(J)g\cB(\/l)
j=1

WECT=IW yeq @(Wl)

N

C i . . _
mw”sze( I=aGNP-(T9)| 10g &| ¢ Z |€S]g|CO(Wk1) Z |65q(3)g|00(v)
j=1

1 —p—j /1 5
Wy CcT—aw Wegq?j)(wkl)

< % £l Z e(n=i=a)P(T9)| 1og §|—C%€JP* (T:9) a7 SuP 9 ( Foy 4 1)90)/m
0 — €100
C . :
< J|log &|SenP-(T:9) N g=a(3) (Pe(T.g)—sup g log(Km+1))
AL >

Now, for &€ > 0, fixed, since we assume that P,(T, g) —supg > sglog2, we can chose m large
enough and ¢ small enough such that 1 :== P,(T, g) —sup g — % log(Km+1)— ﬁso log2 > 0.
By definition of ¢(j), we obtain that

" . 1 n _ (v=9 log(i—4jg) Y slog? " _1__1=¢
Zefqu)(P* (T,g)fsupgfa IOg(Km+1)) :Ze vsq log 2 (81+7—C80 0g ) :Z (] _ ]0) vs0 log2‘€17
J=i J=i J=j

L6For the 4™ and 6" inequalities, we use Proposition Here again, P, (T, g) can be replaced by Pi (T, g)+¢
up to a larger multiplicative constant.
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is bounded. The bound (/5.3 then follows by combining all the above estimates into (5.6|) and
taking the appropriate suprema. U

Remark 5.6. In the case ¢ = —hiop(¢1)7, the assumption Pi(T,g) — supg > splog2 in
Proposition is implied by the condition hiop(¢1)Tmin > Solog2, which is itself implied
by TminPugrp (T)/1sre(7) > solog2 thanks to the Abramov formula. This latter condition
appears to be satisfied for billiards studied by Baras and Gaspard [22] and by Garrido [21], as
long as Tin is not too small.

OO0
OCO0
000

FIGURE 1. (a) The Sinai billiard on a triangular lattice studied in [22] with
angle /3, scatterer of radius 1, and distance d between the centers of adjacent
scatterers. (b) The Sinai billiard on a square lattice with scatterers of radius
R < R’ studied in [2I]. The boundary of a single cell is indicated by dashed
lines in both tables. (Figure taken from [3], Figure 2].)

Indeed, Garrido [21] studied the Sinai billiard corresponding to the periodic Lorentz gas with
two scatterers of radius R < R’ on the unit square lattice (Figure [[[b)). Setting R’ = 0.4,
Garrido computed Ay (T) and pgrp(7) for about 20 values of R ranging from R = 0.1

(when the horizon becomes infinite) to R = g — 0.4 (when the scatterers touch: 7yin = 0).
According to [3, § 2.4], in those examples we can always find ¢g and ng such that sy < %

Furthermore, T, = § — 0.4 — R. Now, for R =0.1T, we find that

iy (T)/psrs (1) = (42 = 0.5)11 > 0.7 > Llog2 > slog 2,
and for R = 0.2, we find that

ToninPpgrg (T)/ pisus (7) = (%2 — 0.6) 34 > 0.48 > L1og 2 > s9log 2.

Since for R € (0.1, 0.2], R — Tmin(R) is a linear function, and according to Garrido Figures 6
and 8, R+ psre(7)(R) is well approximated by an affine function and R +— hygp, (T)(R) is
lower bounded by an affine function joining the values at R = 0.1 and 0.2, it appears that the
condition Tiinhugrp (T)/psre(T) > solog2 is satisfied for all R € (0.1, 0.2].

Baras and Gaspard studied the Sinai billiard corresponding to the Lorentz gas with disks
of radius 1 centered in a triangular lattice (Figure [I{a)). The distance d between points on
the lattice is varied from d = 2 (when the scatterers touch: Ty, = 0) to d = 4/4/3 (when
the horizon becomes infinite). We have that 7, = d — 2 and, still according to [3, § 2.4], in
those examples we can always find ¢g and ng such that sg < % The computed values are the
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average Lyapunov exponent of the billiard flows given in [22], providing a lower bound directly
on hygpp (1) /psre (7). For d = 0.2, we find

TiinPyugrp (T)/ e () > (J5 = 2)1.8 > 0.55 > 5log2 > solog 2.

The condition hiop($1)Tmin > solog?2 is a little bit more restrictive than the one used by
Baladi and Demers in [3] since, by the Abramov formula, ks > htop(¢1)Tmin. (Also, we do not
know any example of billiard for which the condition h, > sglog2 is not satisfied.)

We now turn to the condition SSP.1. Unfortunately, we don’t know any billiard table
such that the potential g = —hop(¢1)7 satisfies a simple condition implying SSP.1. By
simple, we mean a sufficient condition that does not involve topological entropies, since they
are notoriously hard to estimate numerically. First, recall from Lemmas and that
log A > htop(é1)(Tmax — Tmin) implies SSP.1. Remark that since g and %Sng are cohomologous,
they would give rise to the same equilibrium states. It is then advantageous to work with the
Birkhoff average instead of g because max %Sn g < Tmax and min %Sn g = Tmin (notice that 7y
is achieved on an orbit of period 2). Now, taking advantage of the Abramov formula and of the
variational principle, we get that max %Sng < 2Tmin implies hy > hiop(¢1)(max %Sng — Tmin)
(recall that h, > logA is the topological entropy of T', as defined in [3]). The condition
max%Sng < 2Tmin involves quantities that are easy to estimate numerically, however, we
don’t know any billiard table satisfying this condition.

We now deduce the bounds of Theorem from the growth rate of stable curves proved in
Proposition [3.7}

Proof of Theorem[5.3. To prove this lower bound on [£{ 1], recall the choice of d; > 0 from
Lemma [3.3for e = 1/4. Let W € W* with |W| > 6;/3 and set the test function ) = 1. For
n = ni,

) )
/ Lyldmy = Z / "gde Z 51 II}Il/f eSnd > 1C 1 Z suf) eon9,
Wie Wiegat (W) Wiegat (W)

where we used Lemma [2.3) E 3| for the second 1nequahty, since for each W; € 951( ) there exists
A € M such that W; C A and supyy, e3n9 L sup 4 9 < Cinf 4 579 < Cinfy, e Sn9. We can
now use Proposition [3.7) to get

) _ 5
(5.15) Wﬁgmmw > %CO 3 \eSn19|CO(A) > 0L nPe(T).

Thus 5
€115 = 1£91w > o coe™F(T9),

Letting n tend to infinity, one obtains hm HE"lHl/n > P+(Th9), O

6. THE MEASURE pig

This section is devoted to the construction, the properties and the uniqueness of an equi-
librium state g, for T', associated to a potential g.

We will assume throughout that g is a (M, ay)-Hélder potential such that Py (T, g)—sup g >
solog 2 and that the conditions SSP.1 and SSP.2 are satisfied.
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6.1. Construction of the measure p, — Measure of Singular Sets. In this section, we
construct left and right maximal eigenvectors for £, (Proposition as well as a T-invariant
measure [ty by pairing them as in . From this particular structure, we deduce an estimate
on the measure of the neighbourhood of singular curves (Lemma which yields that i, is
T-adapted and has no atoms (Corollary [6.3).

Proposition 6.1. If g is a (M}, ag)-Hélder continuous potential such that P.(T,g) —supg >
s0log 2 and log A > sup g —inf g, then there exist v € By, and v € B, such that Lyv = eP=(T9)y
and LIv = P9 g In addition, v and ¥ take nonnegative values on nonnegative C* functions
on M and are thus nonnegative Radon measures. Finally, 0(v) # 0 and ||v||, < C

From the definition of |- |,,, we can see that since for ¢, f € C' (M), [¢flw < l@loran | flw,
the multiplication by ¢ can be extended to f € B,,. Therefore, if P.(T,g) —supg > sglog?2
and both SSP conditions are satisfied, a bounded linear map u4 from C1(M) to C can be
defined by taking v and v from Proposition and setting

v(pv)
6.1 = .
This quantity is nonnegative for all nonnegative ¢ € C*(M) and thus g can be extended into

a nonnegative Radon measure u, € (C°(M))*, with u,(1) = 1. Clearly, p, is a T-invariant
probability measure since for every ¢ € C'(M) we have

P(ov) = e P TDp(oL, (1) = e > TOH(L, (0 0 TIV)) = (0 T)) = 7(v)p1glip 0 T)

Proof. Let 1 denote the constant function equal to 1 on M. We will construct v out of this
seed. By Theorem E recall that |[L)1][g > [[£)1][s = |L51|w > CeP(T:9) . Now consider

n—1
(6.2) Up = %Z e_kp*(T’g)E];l, n =1

k=0
By construction, the v, are nonnegative, and thus Radon measures. By Proposition they
satisfy ||vn||p < C, so using the relative compactness of B in B, ([3, Proposition 6.1]), we
extract a subsequence (n;) such that lim; v,, = v is a nonnegative Radon measure, and the
convergence is in B,,. Since L, is continuous on B,,, we may write,

n]fl

Loy = lim — Z e kb Tg)L'kHl

—00 M4
J I k=0

ePe(Ty9) "9 1 .
= Z e kP(T.9) £k P*(T D] 4 —ra=DP(T9) iy — P<(T9),,

]—>oo nj

where we used that the second and third terms go to 0 (in the B-norm). We thus obtain a
nonnegative measure v € By, such that L,v = el (T9)y,

Although v is not a priori an element of B, it does inherit bounds on the unstable norm
from the sequence v,. The convergence of () to v in B,, implies that

lim sup sup </ vy dmyy / anwdmw> =0.
= Wwews peco(w) \Jw w

[Ylcewy<1
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Since ||vy, ||, < C, it follows that |[v||, < C, as claimed.

Next, recalling the bound | [ f dusrs| < C’]f\w from [3, Proposition 4.2], setting dusgrp €
(Bw)* to be the functional defined on C*(M) C By, by dusgrs(f) = [ f dusrs and extended
by density, we define

n—1
_ 1 —kP.(T,g) ( p*\k
(6.3) o= kzoe @9 (L) (dpsrs)-
Then, we have |0, (f)| < C|f|y for all n and all f € B,,. So 7, is bounded in (B,)* C B*. By
compactness of the embedding ([3, Proposition 6.1]), we can find a subsequence 775, converging

to v € B*. By the argument above, we have Liv = el (T9)p,
We next check that 7, which in principle lies in the dual of B, is in fact an element of (B,)*.
For this, it suffices to find C' < oo so that for any f € B we have

(6.4) 7(f) < C|f -

Now, for f € B and any 7; > 1, we have

(< 1@n; = 2) (N4 173, (N < 1(a; = 7))+ [f |-
Since 7m; — v in B*, we conclude |0(f)| < |fl, for all f € B. Since B is dense in B,,, by [29,
Thm 1.7] 7 extends uniquely to a bounded linear functional on B, satisfying (6.4). It only

remains to prove that r(v) > 0.
Since 7 is continuous on B,,, we have on the one hand

n;j—1 ni—1
1 < 1 ¢
5(v) = lim 9(v,.) = lim — —kP(T.9)5(£*1) = lim — (1) = (1
P(v) = Jim #(vn,) = Tim o kZ:O e 7(Lg1) = lim " kzzo (1) = (1),

where we have used that © is an eigenvector of £j. On the other hand,
; , Pl
(1) = lim = Y e PO Fdpna)(1) = lim = Y e T [ 8 d,

] —00 T4 —00 T4
J 7 k=0 J I k=0

Next, we disintegrate usrp as in the proof of [3, Lemma 4.4] into conditional measure M‘SAI/{EB on
maximal homogeneous stable manifolds W, € Wy, and a factor measure dfisgp(§) on the index

set = of stable manifolds. Recall that u?;fB = |We| ! pedmu, where pg is uniformly log-Hélder
continuous so that

6.5 0 < ¢, <infinf ps < su o <C, < o0.
(6.5) o < Infinf e geglpglc we) < Cp

Let =% denote those ¢ € = such that |[W¢| > 61/3 and note that figgs(Z°) > 0. Then,
disintegrating as usual, we get by (5.15)) for & > nq,

/,Cgld,usRB = /H/W £§1PE|W§’_1 degdﬂSRB(E)
= We
-1 3~ 2c . _
> /5 / ‘Clgldmwgcp351 "diisrp(€) > cp?oekP*(T,g)MSRB(:al) > 0.
=91 W§

Thus v(v) =v(1) > ch%ﬂSRB(E‘Sl) > 0 as required. O
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Lemma 6.2. For any vy > 0 such that 257 < e (T:9)=59 gnd any k € 7 there exists Cy > 0
such that
(6.6) pg(Nz(Sk)) < Cilloge|™, Ve > 0.

In particular, for any p > 1/~ (one can choose p < 1 for v > 1), n >0, and k € 7Z, for
fg-almost every x € M, there exists C' > 0 such that

(6.7) d(T"z,S) = Ce™™ | Vn > 0.

Proof. The proof is the same as the one of [3, Lemma 7.3] where p, should be replaced by g,
and the v from there by the v from here. We sketch the proof: is obtained by showing

(6.8) [V (Ne(Sk))l < Cllgevlw < Cklloge| ™,

where 1 = 1p.(s,), and then by applying (6.4)). Then, (6.7)) is deduced from using the
Borel-Cantelli Lemma and ¢ of the form e~ O
Corollary 6.3. a) For any v > 0 so that P.(T,g) —supg > vsolog?2 and any C' curve

S wuniformly transverse to the stable cone, there exists C > 0 such that v(N:(S)) <
Clloge|™ and pg(Nz(S)) < Clloge| ™" for all e > 0.
b) The measures v and g have no atoms, and pg(W) =0 for all W € W* and W € W*".
¢) The measure ug is adapted: [ |logd(x,S+1)|duy < co.
d) pg-almost every point in M has a stable and unstable manifold of positive length.

Proof. The proof is identical to the one of [3| Corollary 7.4], replacing ju, by pg. g

6.2. v-Almost Everywhere Positive Length of Unstable Manifolds. In this section, we
establish almost everywhere positive length of unstable manifolds in the sense of the measure
v — the maximal eigenvector of £, in B,,, extended into a measure since it is a nonnegative
distribution. To do so, we will view elements of B,, as leafwise measure (Definition .
Indeed, in Lemma [6.6] we make a connection between the disintegration of v as a measure,
and the family of leafwise measures on the set of stable manifolds W?*.

Definition 6.4 (Leafwise distribution and leafwise measure). For f € C1(M) and W € W9,
the map defined on C*(W) by

b /W fo dmyy,

can be viewed as a distribution of order a on W. Since | [i;, foo dmw| < |flw|¥|cemwy, we can
extend the map sending f € C1(M) to this distribution of order o, to f € By. We denote
this extension by fW fodmw or fW Wf, and we call the corresponding family of distributions
(f, W)wews the leafwise distribution associated to f € By,.

Note that if fW fodmw = 0 for allyy = 0, then the leafwise distribution on W can be extended
into a bounded linear functional on C°(W), or in other words, a Radon measure. If this holds
for allW € W?#, the leafwise distribution is called a leafwise measure.

Lemma 6.5 (Almost Everywhere Positive Length of Unstable Manifolds, for v). For v-almost
every x € M the stable and unstable manifolds have positive length. Moreover, viewing v as
a leafwise measure, for every W € W3, v-almost every x € W has an unstable manifold of
positive length.
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Lemma 6.6. Let V¢ and 0 denote the conditional measures and factor measure obtained by

disintegrating v on the set of homogeneous stable manifolds We € Wy, £ € E. Then for any
e CY(M),

v

wdl/Wf — M

Wg WE pf v

VE €, and di(€) = |We| ™ </W p§y> diisrs(§).
3

Moreover, viewed as a leafwise measure, v(W) > 0 for all W € W5.

Proof. The proof is formally the same the one for [3, Lemma 6.6] replacing p. and their v by
g and the v from here, as well as their ny by the one from Corollary and [3, eq (7.13)]
by its weighted counterpart: there exists C' > 0 such that for all W € W?,

(6.9) / V> 6‘W|(P*(T79)—supg)€2'
W
This estimate holds since, recalling (6.2), we have for C = 5% 51—(& (T,9)—inf Q)CQ’
1 nj—1
/ v =lim — Z e_kp*(T’g)/ E’;l dmy
w R w
1 n;—1
> lim — e kP-(T:9) eIm29 L2 1 dmy,.
R k—z ; Wi 7 '
—n2 Wi€Gnh (W)
nj—l
> lim 3 e kP T intg COL L P.(T,9)(n2)
g Ty . 2
2 0761606777’2(13* (T»g)finfg) 2 é‘w‘(P*(T,g)fsupg)ég
2 )
where we used Theorem [5.3] for the second inequality. O

Proof of Lemma[6.5. The statement about stable manifolds of positive length follows from the
characterization of 7 in Lemma since the set of points with stable manifolds of zero length
has zero [isgrp-measure [13].

The rest of the proof follows closely the one of the analogous result [3, Lemma 7.6] (corre-
sponding to g = 0), but with more general computations.

We fix W € W? and prove the statement about v as a leafwise measure. This will imply
the statement regarding unstable manifolds for the measure v by Lemma

Fix ¢ > 0 and A € (1,A), and define O = Uy,>10,,, where

Op={zeW|n=min{j>1|d,(T 72 8) < C.AT}},

and d,, denotes distance restricted to the unstable cone. By [I3, Lemma 4.67], any z € W ~\. O
has an unstable manifold of length at least 2e. We now estimate v(0) = >, -, v(Oy), where
equality holds since the O, are disjoint. Since each O,, is a finite union of open subcurves of
W, we have

n;—1

. .1 _
(6.10) /W lo,v = lim lo,vn; = lim — Z e FP(T9) /W Ilonﬁlgl dmw .

Jj—oo Jw J—00 1j 1m0
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We give estimates in two cases.
. : k _ Skg
Case I: k < n. Write meOn Lgldmy = ZWieggo(W) meT—kOn e’k dmyy, .

If 2 € T-%0,, then y = T~z satisfies d, (y, S1) < eC.A~" and thus we have d,,(Ty, S_1) <
Ce'/2A="/2. Due to the uniform transversality of stable and unstable cones, as well as the
fact that elements of S_1 are uniformly transverse to the stable cone, we have ds(Ty,S—1) <

Cel/2A="/2 as well, with possibly a larger constant C. ‘
Let 7% ;(x) denote the distance from 777z to the nearest endpoint of W*(1/x), where

W$(T~/z) is the maximal local stable manifold containing 7~7/z. From the above analysis, we
see that W;NT~*0,, C {x € W; : 72 k1 (T) < Cel/2A="/2} . The time reversal of the growth
lemma [13, Thm 5.52] gives mw;, (r*,, () < Ce'2A="/2) < C'e' /2A—"/2 for a constant C’
that is uniform in n and k. Thus, using Proposition [3.10] we find

/ LEldmy < CeVPAT2 N (€549 coqy,y < CePPHTOI 2R
WnNOn, 5
W;eG, % (W)
Case II: k > n. Using the same observation as in Case I, if z € T7"*10,,, then z satisfies

ds(z,5-1) < Cel/2A—"/2. We change variables to estimate the integral precisely at time
—n + 1, and then use Propositions [5.1] and and Lemma [3.12

/ LF1dmy = Z / eS"*IQL'I;*"Hl dmyy,
WNO., ) w,NnT—-n+10,

W;eG%0 (W

D>
W,€G°0 | (W)

ST Hog Wi (rf < CeY2A2) | S0y €511
w,egl0
<Y Jog(CEMEATA)TIC 519 o gy, eI P T0)
W,€G00 | (W)
< |log(Ce'2PA/2) 10T

Using the estimates of Cases I and II in (6.10) and using the weaker bound, we see that,

/ A eS"—lgEIg“”H 1dmw,
WiN(r§<Cel/2A—n/2)

N

(W)

/ Lo, vn, < C|log(CY/2A-"/2)| 7.
w

Summing over n, we have, fW lovn; < C'|log e[!=7, uniformly in j. Since vp; converges to
v in the weak norm, this bound carries over to v. Since £ > 0 was arbitrary and v > 1, this
implies v(O) = 0, completing the proof of the lemma. O

6.3. Absolute Continuity of ;1, — Full Support. In this subsection, we will assume that
~v > 1, which is possible since P.(T,g) — supg > splog2. In the next subsection, we prove
that pg is Bernoulli. This proof relies on showing first that p, is K-mixing. As a first step,
we will prove that p, is ergodic, using a Hopf-type argument. This will require the absolute
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continuity of the stable and the unstable foliations for 4, which will be deduce from SSP.2
and the following absolute continuity for v:

Proposition 6.7. Let R be a Cantor rectangle. Fiz W° € W*(R) and for W € W?*(R), let
Ow denote the holonomy map from WO N R to W N R along unstable manifolds in W*(R).
Then for any (M}, ay)-Hélder potential with Py(T,g) — supg > solog2 and having SSP.1,
Ow is absolutely continuous with respect to the leafwise measure v.

Proof. Since by Lemma [6.5] unstable manifolds comprise a set of full v-measure, it suffices to
fix a set E C WY N R with v-measure zero, and prove that the v-measure of O (E) C W is
also zero.

Here again, the proof follows closely the one of the analogous result [3, Proposition 7.8]
(corresponding to g = 0), but with more general computations.

Since v is a regular measure on W9, for € > 0, there exists an open set O. C W°, O, D E,
such that v(O.) < e. Indeed, since W is compact, we may choose O to be a finite union of
intervals. Let 1. be a smooth function which is 1 on O, and 0 outside of an e-neighbourhood
of O.. We may choose 1. so that fWO Ye v < 2e.

Using (5.4), we choose n = n(e) such that [t)c o T"|c1(p-npoy < 1 and A~ < e. Following
the procedure described in the proof of the estimate on the unstable norm in Proposition [5.1
we subdivide 77"W? and T~"W into matched pieces U]Q, U; and unmatched pieces VZ-O, V.
With this construction, none of the unmatched pieces T”V;O intersect an unstable manifold in
WHY(R) since unstable manifolds are not cut under 7",

Indeed, on matched pieces, we may choose a foliation I'; = {%}er]o such that:

i) T"T'; contains all unstable manifolds in W*(R) that intersect T"U ](-) ;

ii) between unstable manifolds in I'; N T~"(WW"(R)), we interpolate via unstable curves;

iii) the resulting holonomy ©; from T"U ]Q to T"U; has uniformly bounded J acobianm with
respect to arc-length, with bound depending on the unstable diameter of D(R), by [5, Lem-
mas 6.6, 6.8];

iv) pushing forward I'; to T"T'; in D(R), we interpolate in the gaps using unstable curves;
call T the resulting foliation of D(R);

v) the associated holonomy map Oy extends Oy and has uniformly bounded Jacobian,
again by [5, Lemmas 6.6 and 6.8].

Using the map Oy, we define 1;8 = 1) o@;Vl, and note that \1Z£|01(W) < Clve|cr(woy, where
we write C'1(W) for the set of Lipschitz functions on W, i.e., C* with o = 1.

Next, we modify ¢, and @ZE as follows: We set them equal to 0 on the images of unmatched
pieces, T"V? and T™V;, respectively. Since these curves do not intersect unstable manifolds
in W*(R), we still have 1. = 1 on E and Q,ZE =1 on O (F). Moreover, the set of points on
which ¢, > 0 (resp. QZE > 0) is a finite union of open intervals that cover E (resp. Ow (F)).

1"Indeed, [5] shows the Jacobian is Holder continuous, but we shall not need this here.
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Since fWO Y. v < 2¢, in order to estimate fW zzg v, we estimate the following difference,
using matched pieces

Yev _/ @ZEV = e_nP*(T’g) (/ Yo LM _/ J&: ETLV)
wo w wo w

(6.11) _
_ e—nP*(T,g) Z e o T" eSond / ¢j v+ / (¢J — 0T esng) v
—Juy Uj Uj

where ¢; = (¢ o T" en9) o Gro o G&jl, and Gpo and Gy, represent the functions defining U]Q
J J

and Uj, respectively, defined as in (5.5). Next, since d(y. o T" eSnd, ¢j) = 0 by construction,
and using (5.8)) and the assumption that A=" < €, we have by (5.9)),

(6.12) e (T9) Z wEOT"V—/ ¢jv| < Clloge|™*||vlu-
Uj
It remains to estimate the last term in (6.11]). This we do using the weak norm,

(6.13) [ (=0 S <oy = B o T S W

j
By (5.10f), we have
95 — {/;a o™ eSng‘Ca(U' < Cl(he 0 T" eSng) ° GUQ - (Je o™ eSng) © GUj ‘Ca(lj) )

where [; is the common r-interval on which GUo an Gy, are defined.
Fix r € I, and let z = GUo( ) € Uj and T = Gy, (r). Since U]Q and U; are matched, there

exist y € U JQ and an unstable curve 7, € I'; such that v, N U; = Z. By definition of JE, we
have 9. o T™(Z) = . o T™(y). Thus,

(e 0 T €579) 0 Gyo(r) — (Ve 0 T €579) 0 Gy, ()]
< e 0 T"(2) = e 0 T"(@)]|599| + [ 0 ()59 — 59
< ([e 0 T"(2) = e o T™(y)| + o 0 T™ (y) — the 0 T"(7)])e"*P9 - [ 59() — 597

A%
(We o T"|croyd(z, y) + [glces 1\&1(05)%> e supY

< (CA—n +C€a9)ensupg < C(€+6a9)ensup97

N

where we have used the fact that d(x,y) < CA™" due to the uniform transversality of stable and
unstable curves. We also used the fact that, by definition, the vertical segment v, connecting
x to 7 is such that |[T™y,| < Ce. Since each Ty, lies in the extended unstable cone, for all
0 <i < n, we get that d(T%(z), T%(z)) < CA~ ¢, hence the bound
|e5n9(2) _ 9@ L ]9n9(@)| |1 — InI@)=Sn9(@)| L 2en 5P| G o(7) — S, g(x)]
A%
Av —1

where we used that |1 — e*| < 2|x| when z is near 0.

< (Cé‘)&‘g‘cagensng
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Now given r, s € I;, we have on the one hand,
o1g) (=T €502 Guple) = (oo T e50) 2 G (1)
. — (e 0T e59) o GU]o(s) + (e 0T e59) 0 Gu,(s)| < 2Ce%e™sPY

while on the other hand,
(6.15)
|(ws o™ eSng) © GUJQ (r) — (IZE ofm" eSng) © GUj (T) — (e 0T eSng) © GUJQ (3) +

(

= (= 0 T €9) 0 Gyo(r) — (= 0 T" €9) 0 Gypo (s) — ((the 0 T™ €%79) 0 Gy, (r)
< ‘w6|CO(W0)|€S"g|C“9 d(GUJC_) (7‘), GU]Q (S))ag + ‘1% e} Tn‘CI(WO)d(GU? (7’), GUJQ 8))‘
+ [Delcow) €529 |cmo d(Go (r), Guo ()™ + e 0 T |or )y d(Go (1), Gy (5)) €579 o

J
< (Clr = 5|+ C'|r — 5]%9)e" ™9 L C|r — 5| e3P

e o T" %) 0 Gy, ()]
— (e 0 T €59) 0 Gy, (5))]
GS

"co

where we have used Lemma [3.12[ and the fact that GL_[% and Gt_fjl have bounded derivatives
J

since the stable cone is bounded away from the vertical.
The difference between evaluation at r and s, divided by |r—s|®, is bounded by the minimum
of (6.14) and (6.15)), both divided by |r — s|%. This is greatest when the two are equal, i.e.,

when |r — s| = Ce. Thus H*((1h. o T €579) 0 Gpo — (e 0 T™ €579) o Gu,;) < Ce~%ens1Py,
J

and so |¢; — Yoo T" eS"9|Ca(Uj) < Ce™*emsUPI . Putting this estimate together with (6.12))
and (6.13)) in (6.11]), we conclude,

010 | [ ver= [ G

< Clloge|™S||v]ly + Ce¥ ™ |u| e P (T9)—supg)

Now since [j;0 % v < 2¢, we have
(6.17) / Yo v < C'|loge| ™,
w

where €’ depends on v. Since ¢; = 1 on O (E) and ¢, > 0 on an open set containing Oy (E)
for every ¢ > 0, we have v(Ow (E)) = 0, as required. O

Corollary 6.8 (Absolute Continuity of p, with Respect to Unstable Foliations). Let R be
a Cantor rectangle with pg(R) > 0. Fiz W° € W*(R) and for W € W*(R), let Oy denote
the holonomy map from WO N R to W N R along unstable manifolds in W*(R). Then Oy is
absolutely continuous with respect to the measure fiq.

In order to deduce the corollary from the Proposition [6.7], we introduce the set M8, as in

[3], of regular points and a countable cover of this set by Cantor rectangles. The set M"™® is
defined by

Mt ={x e M|dz,oW?x)) >0, dlz,oW"(x)) > 0}.

At each x € M™8, we can apply [I3, Prop 7.81] and construct a closed locally maximal Cantor
rectangle R, containing x, which is the direct product of local stable and unstable manifolds.
Furthermore, by trimming the sides, we may arrange it so that $diam®(R,) < diam"(R,) <
2 diam®(Ry).
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Lemma 6.9 (Countable Cover of M™8 by Cantor Rectangle). There exists a countable set
{z}jen C M™® such that UjR,; = M™® and each R;j = Ry, satisfies (3.19)).

Proof. This lemma is exactly the content of [3, Lemma 7.10]. O

Let {R; | j € N} be the family of Cantor rectangles constructed in Lemma [6.9 discarding
the ones with zero pg-measure. Then pg(U;R;) = pg(M*™®) = 1, by Corollary [6.3(d). In the
rest of the paper, we shall work with this countable collection of rectangles.

Given a Cantor rectangle R, define W?*(R) to be the set of stable manifolds that completely
cross D(R), and similarly for W*(R).

Proof of Corollary[6.8 In order to prove absolute continuity of the unstable foliation with
respect to pg, we will show that the conditional measures ,ng/V of ug are equivalent to v on
pg-almost every W € W9(R).

The proof here follows closely the one of [3, Corollary 7.9] (corresponding to g = 0), but
with more general computations.

Fix a Cantor rectangle R satisfying with pg(R) > 0, and W0 as in the statement of
Corollary Let E C W9N R satisfy v(E) = 0, for the leafwise measure v.

For any W € W?*(R), we have the holonomy map Oy : WY N R — W N R as in the proof
of Proposition For € > 0, we approximate F, choose n and construct a fgliation T of the
solid rectangle D(R) as before. Define 9. and use the foliation T to define ). on D(R). We
have {/;5 =1 on E = Uyecpds, where 7, is the element of I’ containing . We extend zza to M
by setting it equal to 0 on M \ D(R).

It follows from the proof of Proposition in particular , that ’ng € By, and
]JEVIU, < C'|loge|~¢. Now,

n;—1

o10) () = ) = Jim - 3 eI (L3)" Ao (1ev)
k=0

(6.18) n

= lim — Z eikP*(T’g)uSRB(Eg(QZEV)).

j—00 N5
J J k=0

For each k, using the disintegration of psgp as in the proof of Lemma with the same
notation as there, and (6.5)), we estimate,

psrn(LE(Dev)) = /_ . LE(ev) pe dmw, [We| ™" djisrn(€)
= 3
< C/ |£S(Jey)|w ‘W€|_1 d/lSRB(g) < Cpekp*(ﬂg)thV’w < Cpekp*(Thq)‘ 10g5|_§7

where we have used (5.1)) in the last line, as well as the fisgp-integrability of |[W¢|™! from [13]

Exercise 7.22]. Thus py(¢:) < Clloge|™*, for each € > 0, so that p,(E) = 0.
Disintegrating ji, into conditional measures Mgvé on We € W?9 and a factor measure djig(§)

on the index set Eg of stable manifolds in W?*(R), it follows that ,ung(E) = 0 for jig-almost
every £ € Zp. Since E was arbitrary, the conditional measures of p, on W#(R) are absolutely
continuous with respect to the leafwise measure v.
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To show that in fact /ﬂg/v is equivalent to v, suppose now that E Cc W° has v(E) > 0. For

any € > 0 such that C’|loge|™ < v(E)/2, where C’ is from (6.17)), choose 1. € C'(W?) such
that v(|¢e —1pg[) <&, where 15 is the indicator function of the set E. As above, we extend .

to a function ¢, on D(R) via the foliation T', and then to M by setting Y. =0on M \ D(R).
We have . € By, and by (6.16)

(6.19) V(e Iw) = v(We 1yo) — C'|loge| <, for all W € W*(R).
Now following (6.18)) and disintegrating psrp as usual, we obtain,

n—1

pg(the) = hm :L Z e kP(T9) / E’;({/;EV) pe dmw, dfisrs ()

k=0 EJ/We

1]

(6.20)

n—1
.1 _ N
:hﬁngze kP*(T,g)/E 2 : / %ngTk eSk9 dfisrs(€) .

k=0 We i €G01(
To estimate this last expression, we estimate the thermodynamic sum over the curves We;
which properly cross the rectangle R.

By SSP.2 and the choice of 4; in (3.9)), there exists kg, depending only on the minimum
length of W € W#(R), such that

Z & Moo,y = Z |€Skg‘co(wi) , for allk > ko.
WiELil (We) Wﬁgzl (We)
By choice of our covering {R;} from Lemma all We ; € Lil (We) properly cross one of

finitely many R;. By the topological mixing property of T', there exists ng, depending only on
the length scale 41, such that some smooth component of T~"°W¢ ; properly crosses R. Thus,

letting Cy,(W¢) denote those W¢; € le (W¢) which properly cross R, we have

s inf g S
> Moy = Y 2 €01 o,

w\t—t

Wi€Chtng (We) We i €L (We) WG, (We,:)Chng (We)
. 1 . 1 .
no inf g Skg ng inf g Skg noinfg kP« (T,g
>e > e lcowe ) 2 3¢ le™* | cowe ) = 3ce P T9)
6 5
We €L, (We) Wei€G,! (We)

for all & > kg, where ¢ > 0 depends on ¢y from Proposition as well as the minimum length
of W € W3(R).
Using this lower bound on the sum together with (6.19)) yields,

g(ve) > fee P9 (1 () — C'|loge| %) > C" (v(E) — |loge| ™) .

Taking € — 0, we have

(6.21) pg(E) = C"v(E),
and so ,ugV(E’) > 0 for almost every W € W*(R). O

Proposition 6.10 (Full Support). We have p14(O) > 0 for any open set O.
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Proof. The proof is the same as the one of [3, Proposition 7.11], replacing 1. by 14, as well as
results used from [3, § 7] by their counterparts from the present section. O

6.4. Bernoulli property of 1, and Variational Principle. In this section, we use the
absolute continuity results on the holonomy map from Section to establish that p, is K-
mixing. We also prove an upper bound on the p,-measure of weighted dynamical Bowen balls.
Using these estimates, we are able to prove that p, is an equilibrium state for 7' under the
potential g — that is, uy realizes the sup in the definition of P(T,g) — and pu, satisfies the
variational principle: P,(T,g) = P(T,g). Finally, using again the absolute continuity along
side with Cantor rectangles and the bound on the neighbourhoods of the singular sets,
we can bootstrap from the K-mixing to prove that pu, is Bernoulli.

Lemma 6.11 (Single Ergodic Component). If R is a Cantor rectangle with py(R) > 0, then
all the stable manifolds W*(R) are contained in a single ergodic component of fig.

Proof. Replacing jux by fi4, the proof of the analogous result [3, Lemma 7.15] can be applied
verbatim. The proof there follows the Hopf strategy. O

Proposition 6.12. For all (M}, ay)-Hélder potential g such that Pi(T,g) —supg > solog?2
and having SSP.1 and SSP.2, (T, pg) is K-mizing.

Proof. Replacing . by pg, the proof of the analogous result [3, Proposition 7.16] can be
applied verbatim. We outline the steps of the proof.

First, Baladi and Demers show that (7™, p.) is ergodic for all n > 1. To do so, they use the
topological mixing of T' to prove that any two Cantor rectangles belong to the same ergodic
component of T".

Then, they prove that T is K-mixing. To do so, they construct a measurable partition out
of the stable and unstable manifolds, that is finer than the Pinsker partition 7(7"). Using
the covering of M8 by Cantor rectangles {R;}, and the absolute continuity of the holonony
map, they prove that each R; belongs to a single component of 7(7"). From this, they deduce
that 7(T') contains finitely many elements on which 7' acts by permutation. Since 7(7T) is
T-invariant and (7", ) is ergodic for all n > 1, 7(T") must be trivial. O

Proposition 6.13 (Upper Bounds on Weighted Dynamical Balls). Assume that Py(T, g) —
sup g > sglog?2 and that SSP.1 holds. There exists A < oo such that for all € > 0 sufficiently
small, © € M, and n > 1, the measure p, constructed in (6.1) satisfies

lug(e_sglg]lBﬁl(z,a)) < Aemx(T9) ]

where B, 1(x,€) is the Bowen ball at x of length n for T~1.

Proof. The inequality follows from the beginning of the proof of [3, Proposition 7.12], where
pis, £ and h, should be replaced by respectively pg, L4 and Py (T, g). O

Corollary 6.14. For all (M}, a,)-Hélder potential g such that P.(T, g) —sup g > solog?2 and
having SSP.1 and SSP.2, the measure jig 15 an equilibrium state of T' under the potential g:
we have P(T, g) = hy,(T) + [ gdpug.

Proof. For all z € M, let P°, (x) denotes the element of PV, containing z. By the Shannon—
MacMillan—Breiman theorem, we have

1
- li_)m Elog 1g(P2,(2)) = by, (P, T) = hy, (T) for pgae €M,
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where the last equality follows from the Kolmogorov—Sinai theorem (because T is expansive
[3, Lemma 3.4]). Furthermore, since by Proposition g is ergodic, then %log e=Sn'

converges to —jug(g) as n goes to infinity. Thus

1 _
(6.22) — lim —log (e_S"lg(x)ug(Pgn(m))) = hy, (T) + /gdug for pg-a.e. x € M.

n—oo N

Now, by Lemma there exists a constant C' such that for all z € M and all y,z € P°, (z),
we have |S;1g(y) — S, tg(2)] < C. Thus

—Satgq )
o Hg (6 PO (z) < .C

e < ~ <e
e Sn 90 g (PL, (2))

and so we can replace e‘Sglg(I)ug(Pgn(m)) in (6.22)) by pg (6_5;191739 (w)>.

Now, we want to replace P°, (z) with a dynamical ball and use Proposition To do so,
recall that for all € < g, the dynamical ball B,(z,¢) is included in a single element of Mg,
which is itself included in at most C' elements of Py, for some C' independent of x. Thus, using
time reversals

.1 51
—hnn_1>1£f - log 1tg (e " 9]13771(%5)) < hy, (T) + /gd,ug,
On the other hand, for ¢ small enough, we get by Proposition [6.13
- —Sn'g
_ hnrr_1>1£f - log 1tg (e :H_B;l(z7€)) > P(T,g).

Combining these last two inequalities, we get hy, (1) + [ gdpg > Pi(T,g), which ends the
proof. O

Proposition 6.15. Under the assumptions of Propositz'on (T, pg) is Bernoulli.

Proof. The proof follows the arguments in Section 5 and 6 in [I5], relying on the of notion
vwB partitions introduced by Ornstein in [27]. Actually, we can apply the same modifications
as in the proof of the analogous result [3, Proposition 7.19], replacing pu. by pg. g

6.5. Uniqueness of the equilibrium state. This subsection is devoted to the uniqueness of
the equilibrium state p, (Proposition . The proof relies on exploiting the fact that while
the lower bound on weighted Bowen balls (or the thermodynamic sums over the elements of
MO ) cannot be improved for pg-almost every x, however, if one fixes n, most elements of
MY (in the sense of thermodynamic sums) should either have unstable diameter of a fixed
length, or have previously been contained in an element of ng having this property, for
some j < n (Lemma . Such elements collectively satisfy stronger lower bounds on their
measure, when weighted accordingly (Lemma . As we have established a good control
over the sums on MY, and M@ in Section [3| we will work with these partitions instead of
Bowen balls.

The strategy we adopt here is similar to that deployed in [3| § 7.7], where Baladi and Demers
proved uniqueness for the case g = 0.
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Recalling (3.1)), choose m; large enough so that (Kmq + 1)1/™ < e1(P=(T,9)=supg) Now,
choose 0y > 0 sufficiently small that for all n, k € N, if A € M*  is such that

max{diam"(A4), diam®(A)} < dq,

then A \ S4,,, consists of at most K'm; + 1 connected components.
For n > 1, define

B, ={Ae M, |VO<j<n/2, T7AC E € M®, ; such that diam"(E) < 02},

and its time reversal
B¥={Ae M¥|V0<j<n/2, T"AC Ee M7 such that diam*(E) < 02}

Next, set Ba, = {4 € M, | either A € B, or T72"A € BZ"}. Define Ga,, = M°,,, \ Ba,.

Our first lemma shows that the thermodynamic sum over elements of Bs,, is small relative to
the one over elements of MQQn, for large n. Let n; > 2my be chosen so that for all A € M(ln,
diam®(A) < CA™"™ < 6y for all n > n;.

Lemma 6.16. There exists C > 0 such that for all n > n,
Z |es;n1g’CO(A) < Ce%np*(T,g)eénsupg(Kml +1)m%+1 < Ce%nP*(T,g)-i-insupg‘
A€Ba,
Notice that since P.(T,g) —supg > 0, we have that %P* (T,g) + isupg < 2P.(T,g).
Proof. Let n > ny and A € B%,, ¢ M%,,,. Forall 0 < j < [n/2], call 4, € M(i[3n/2]—j the

unique element containing 7~1"/2/47 A. By definition of BO_2717 we have that diam"(A4;) < 0o,
meanwhile diam®(A4;) < d2 by choice of n;.

By choice of §, we have that Ag is the union of at most K'm + 1 elements of MTEM /2"
Thus the number of connected components of T Ay is at most K'mq+ 1. Notice that this fact
not only applies to Ag, but also to Apm,, ..., Aimy, Ajnj2|, Where [n/2] =1Imi +4, 0 <i < my.
Thus, we get

#{A € BY, | T2 A € Ag} < (Kmy + 1) < (Kmy +1)m1 7

We are now able to estimate the thermodynamic sum over BY,, :

—1 -1 -1 [n/2] L g1
|6S2n g| o _ |eS2n g‘ - 65’[3n/2W90T +SLn/2Jg
co) co() cog)
AeBY,, AgeM® f3n/21 AeBO, Ag A
T7—In/2] A'CAp

1 o4 St
< BRI (Kmy 4 1) 7t oS’

Ao

co(A) C(Ao)

—1 -1
<> ‘eswmmg 3 ‘esmmg
Ao C°(Ao) A’
< Ce%nP* (T,g)-i—in supg}

where we used Proposition for the last inequality.
Now, notice that B3" is the time reversal of B%,,, thus

S 59| go ) < Cedr I Ay _ pdnP T

AeBgn
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Hence
S5 1 _ Son TP, T, +1lnsu
Z %20 9| go(p—am ) = Z €219 o4y < Ce (T.g)+znsupg.
AeB2n AeB2n
Finally, we get
—1 7 1
Z ’632"9‘CO(A) < 201" P-(T9)gnsupyg,
AEBQn
Il

Next, the following lemma establishes the importance of long pieces in providing good lower
bounds on the measure of weighted elements of the partition.

Lemma 6.17. There exists Cs, > 0 such that for all j > 1 and all A € M(lj such that
diam*(A) > 0y and diam®(T~7 A) > 6, we have

,ug(e_si_lg]lA) > 052€_jp*(T’g) )

Proof. Let Ry, ..., Ry be Cantor rectangles such that p4(R;) > 0 for all 1 < ¢ < k, and such
that any unstable or stable curve of length more than Jy crosses at least one of them. Note
Rs, = {R1,..., R} this family.

Let 7 > 0 and A € /\/l(ij such that diam"(A4) > &2 and diam®*(T7A) > . By choice
of Rs,, A crosses some rectangle R; and T ~J A also crosses some rectangle R;. Note Z; the
index set for the family of stable manifolds W¢ of R;. For £ € E;, let We 4 := We N A. Since
T—7 A properly crosses Ry in the stable direction, and that 777 is smooth on A, it follows that
T We 4 is a single curve containing a stable manifold of R; .

Let [5, denote the length of the smallest stable manifold among the ones in the family of
Cantor rectangles Rs,. Thus, for all £ € E;

-1 ) ) L B
/ e—Sj 9y = e_]P*(Tvg) / v > e—]P*(T,g)Cng(P*(T,g) supg).
We.a T=1We, 4

Finally, let D(R;) be the smallest solid rectangle containing R;. Since u‘g’v and v are equivalent
on pg-a.e. W e WS, we get
_ ‘—1 _ .—1 _ .—1 o
fig(e % I1a) > pgle % “Lanp(r,)) = C"v(e % glAﬂws) = 0326 I (L),
where we used (6.21)) (with £ = A and E = AN Wx=) for the second inequality. Since the
family Rs, is finite, this proves the lemma. (|

Proposition 6.18. If g is a (M}, a,)-Hélder potential with P.(T, g) —sup g > solog 2, having
SSP.1 and SSP.2, then the measure g is the unique equilibrium state for T' under the potential
g.

Proof. Usually, given a known equilibrium state (thus ergodic) 4, in order to prove uniqueness
it suffices to check that for all T-invariant measure p singular with respect to pg, we have
hy(T) + p(g) < hu,(T) + pg(g) — see for example [23, Section 20.3]. This is the strategy we
adopt.

Let p be a T-invariant Borel probability measure, singular with respect to pg, that is there
exists a Borel set F C M with T-'F = F and py(F) = 0 but u(F) = 1.
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For each n € N, we consider the partition Q,, of maximal connected components of M on
which T~™ is continuous. By [3, Lemma 3.2 and 3.3], Q,, is MY, plus isolated points whose
cardinality grows at most linearly with n. Thus Ga, C Qa, for each n. Define B, = Qay~Gop.
The set Bgn contains Bs,, plus isolated points, and so its associated thermodynamic sum is
bounded by the expression in Lemma plus #{isolated points}e?"s"P9. Since P,(T,g) —
supg > 0, we have that EP* (T,g) + isup g > 2supg, and thus the contribution of isolated
points is small compared to the upper bound from Lemma [6.16]

By uniform hyperbolicity of T, the diameters of the elements of T'1"/2/Q,, tend to zero as n
goes to infinity. This implies the following fact.

Sublemma 6.19. For each n > nq, there exists a finite union C, of elements of Q,, such that
lim (p+ pg)(FATIM2C) =0,

n—-+oo

Proof. The proof is essentially the same as [3, Sublemma 7.24] where the role of p, is played
by pg. Since notations are introduced in this proof, we write it down for completeness and
latter use.

Let i = p+ pg and Q, = T-1"/21Q,,. For § > 0, by regularity of Radon measures, pick
compact sets K; C F and Ky C M\ F such that max{a(F~ K1), p((M~F)~K2)} <. Since
K, and K, are disjoint and compact, we have n = n; = d(Ky, K3) > 0. If diam(Q) < 1/2,
then either QN Ky = 0 or QN Ky = 0. Let ng be large enough so that the diameter
of Qk is smaller than ns/2 for all & > ns. Fix n = 2ns and set én to be the union of
Q € 9, such that Q N K, # (. By construction, K; C C, and C, N Ky = (. Hence
WENC,) <+ a(Ky ACy) <6+ (M~ (K1 UKy)) < 38. Defining C,, = T"/2C,, completes
the proof. O

Remark that since 771 F = F, it follows that (u+pug)(Cp, A F) also tends to zero as n — +oc.
Since Qo,, is generating for 72", we have

h(T?") = hy(T™, Qon) < Hy(Qan) = — > (@) log 1(Q) -
QEQan

Thus,
2nP,(T, g) = 2nhy,(T) + 2n4(g) = hy(T*") + (S5, 9) < Hu(Qan) + 1S3, 9)

< > Q) (~log u(Q) + S, g(xq) + Cy)
QEQan
where zg € Q and Cy is the constant from Lemma
Now, we want to distinguish elements of Qs,. From the proof of Sublemma for
each n, there exists a compact set K(n) that defines C, = T—"/2IC,, and satisfying (1 +
tg)(UnKi(n)) = (1 + pg)(F). We group elements Q € Qi, C Q, according to whether
T-"Q c C, or T""Q NC, = (. This dichotomy is well defined because if Q is not an isolated

point, and if 7-"Q N C, # (0, then T7"Q € M™,, is contained in an element of Mﬁf}m that
intersect K1(n). Thus Q C T"C,, = TI"™/?1C,, — the case where Q is an isolated point is obvious.

Therefore,

MPLT,9) < Cy+ > u(@Q) (—log (@) + S5 9(x0)) + Y (@) (—log u(Q) + Sy, g(zq))
QcTnC, QEQan\T"C,
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2 ~ —1 ~ —1
<Cy+ - + u(T"C,,) log Z~ e52n9(2Q) | 4 (M . T"C,,) log Z ) ¢52n 9(2Q)
QCT"Cy, QREQan\T"Cyp

where we used in the last line that the convexity of xlogx implies that for all p; > 0 with
Zé\f:l pj < 1, and all a; € R, we have (see [23], (20.3.5)])

N N
—i—ijlogZe‘” .
j=1 i=1

Then, since —2nP,, = ((T™Cp) + (M~ T"C,,)) log e=2P+(T29) | we write for n > ny

|

N
> pi(—logp; +ay) <
j=1

(6.23)
2n(Py(T,g) — Py, (T, g)) — % -Gy

< w(T"Cy) | log Z e520 9(wQ)=P-(T'9) | 1 (M~ T~ "C,) | log Z S2n 9(2Q)=2nP:(T,9)
QCT"Cr QEQan~T"Cy,

gu(cn)log Z eS;nlg(xQ)—mLP*(T,g)_i_ Z eS;nlg(:JcQ)onP*(T,g)

QCT"Cy QCT"C,
QEG2, QeBo,
+ (M ~ Cap)log Z ¢52n 9(2Q)~2nP.(T.9) | Z ¢S 9(2Q)—2nPu(T.g)
QEGQn\T”én QEBQn\T”én

where we used that Qs,, = Ga, U BQn. By Lemma (and the remark concerning the contri-
bution of isolated points), both sums over elements of By, are bounded by Ce—1(P-(T.9)=supg)
It remains to estimate both sums over elements oﬁ Gy To do so, we want to use Lemmal6.1
that is for each @ € Ga,, we want to assign a set E satisfying the assumptions of the lemma.
Let @ € Ga,. Thus Q ¢ BY,,, and so there exists 0 < j < [n/2] such that T77Q C E; €
M8n+j with diam"(E;) > 6. Also, since T2"Q ¢ B2", there exists 0 < k < [n/2] such that
T-2kQ C Ey, € M2" % with diam®(E}) > §2. Thus, both Ey € M™% and T-2"+H+kFE; €
M_T;;j % contain T ~2n+kQ). In particular, there exists E € Mgnij*k containing both Ej,
and T_2”+j+kEj. Let E = T?i~FF ¢ M92n+j+k. Notice that by construction E; C E
and Ej, ¢ T-2"I+kE therefore E satisfies diam(E) > 8y and diam®(T~2"H+FE) > 6y, the
assumption from Lemma Thus,

fg(e™ 53491 ) > O, e~ BI—RP(Tg)

We call (E, j, k) an admissible triple for Q € Ga, if 0 < j,k < [n/2] and E € M92n+j+k,
with 777Q C E and min{diam"(E), diam®(T~2"***E)} > §,. By the above construction,
such admissible triples always exist, but there may be many associated to a given @) € Ga,.
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However, we can define the unique maximal triple for () by taking first the maximum j, and
then the maximum k over all admissible triples for Q.

Let &, be the set of maximal triples obtained in this way from elements of Ga,. For
(E,j,k) € En, let Apy(E, 7, k) denote the set of Q € Ga, for which the maximal triple is
(E,j, k). The importance of the set &, lies in [3, Sublemma 7.25], which we state, and prove,
as follows for completeness.

Sublemma 6.20. Suppose that (El,jl,kl), (Ez,jg,kg) € &y, with Jo = J1 and (Elajlakl) 7&
(Eg,jg, ]{22) Then T_(jz_jl)El N EQ = 0.

Proof. By contradiction, let (Ex, j1, k1), (Ea, j2, k2) € Ean with jo = j1, (E1, j1, k1) # (E2, ja, k2)
and T~U2=7Ey 1 Ey # 0. Notice that T-02=00Ey € M7 while By € MO, o0

Consider first the case ki < ko. Therefore T2~ E, C F,. In particular, any element
Q € A (E1, j1, k1) satisfies T772Q C Es, and so Q € Ay (Es, jo, k2), a contradiction.

Consider now the case ki > ko. Therefore T-U2=71)F, and FEy are both contained in
an element £’ € MY ontjathky s OlnCe Ey C E', we have that diam"(E’) > 3. Also, since
Ttk g c T2 RERE we have that diam®(T~2"+2+k E') > §,. Note that if Q €
A (Er, g1, kl)UAM(EQ,]Q, k2), then (E', ja, k1) is an admissible triple for Q. Thus, if j; = ja,
then £/ = Ey. For Q € Ap(Es, j2, k2), then Q C E; and so (E1, j1, k1) is an admissible triple
for @, which contradicts the maximality of (E3, ja, ko) since k; > ko. Similarly, if jo > 71,
then for Q € Ay (E1, j1, k1), the triple (E’, j2, k1) is admissible for @), which contradicts the
maximality of (£, j1, k1). O

We now prove that if 7"C, N Ay (E, j, k) # 0, then Au(E,j,k) C T"C, and E C T"7IC,,.
Let Q € Ay(E,j, k) be such that Q N T"C, # 0. Then, by definition of (E,j,k), T"Q C
T—"HE e M™% ] . Since 0 < j,k < [n/2], there exists E’ € MLR/QJ such that T~"E C

E'. In particular, we have B/ € Q, and E' NC, # 0. Thus, by construction of C,, we have
C, D E' DT "HE > T Q. In particular, we get Q C T"C,,, and thus A,,(E, j, k) C T"Cp,.
We also get E C T"J Ch.

On the other hand, we prove that if 7"C, N A (E, j, k) = 0, then Ay (E, j, k) € M ~T"C,
and T-"E c M~ C,. Let Q € Am(E,j,k). Then, by assumption, T-"Q NC, = 0. As

above, there exists B’ € MLnL/f /J2 | containing both T-"Q and T~ E. In particular, E' € Q,,

and E' NC, = 0. By construction of C,, we get that E/ € M ~ C,. Thus Q € M ~ T"C,, and
so Ay(E, j, k) € M ~\T"C,. Also, T""HE C M~ C,.

The only last step we have to do before estimating the sums over Go, is to prove that for
each (E, j, k) € Eap,, we have

— . —1
(6.24) S eS| coig) < CeU IR0 ok 1
QEAM( ’]ak)
where C' > 0 is a constant depending only on theﬁ potential g. To do so, notice that if
Q € Ay(FE,j,k), then by construction, 777¢Q C E. Thus T7"Q € M™  is a subset of
Decomposing T7"Q = Q_ N Q+ with Q- € M%, and Q; € ME,

T-n=0F ¢ M”nik
and T-")E = E_N E, with E_ € ./\/l_,n+k and B, € M{~ ., we see that Q_ C E_ and
Q+ C E4. Thus
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Syt S lgoTm S lg+SngoT
Z e%2n 9| cog) = Z |e2n 997 o (png) < Z Zle 9590 co0_noy)

QeAN (E,j,k) QeApN (E,j,k) Q_eMl QreMy
Q_CcE_ Q+CEy

71 o
< Y 1 ooy Do 1€ oo

Q_eMO QeMy
Q_CE_ Q+CE+
S lgoTn—F SpgoToT—(n=1)
< D 1T oogning )y D 1% lcorn-iqu) -
Q-eM° Q+eMy
Q_CE_ Q+CE4

Now, notice that T-"t*Q_ ¢ M’_‘;k is a subset of T-"FE_ ¢ Mgik. Thus 7-"t*Q_ must
be of the form Q_ NT-"**E_ for some Q_ € ./\/l(ik. Similarly, 7"/ @, must be of the form
Q4 NT" I E, for some Q, € M. Thus

S—l S—l n—k Sn —(n—j)
2 e ooy < 3 1€ T ooig_nsni ) D 1€ o nneip,

QeAN (E9j9k) QfeMO,k Q~+ EM[J)
St Sil_._ g—S;E g S.igoT S_i g
< Z €7 g|CO(Q,)|6’ ik #corn-ig_) Z |79 |CO(Q+)|€ i corn-ip,) -
Q-eM’, QreM}

Now, using Lemma the supermultiplicativity from Lemma [3.9]and the exact exponential
growth from Proposition we get the upper bound (6.24) with C = 2C, e*"P g—infg
We can now estimate the sums over elements of Go,.

Z ¢San 9(2Q)=2nP-(T.9) < Z Z San 9(@Q)—2nPu(T,g)
QEGan (E.jk)€Ean QeAn (E,j k)
QCT"Cr EcT™iC,
—(2n—j—k) P, (T, S_nli; g _ -1 fS_n17,7 gq _ S_nlf; g _
< Z Ce~ == (T.9) | e%an—j- lcogiy < Z CCy, pgle 72m=i-k1 g)e72n==+| o gy
(E,j,k)eggn (E,j,k’)eggn
EcTtr—icC, EcT™iC,
—1 = -1 —ntj B Y
< 0052 Cy Z pg(E) < 0052 Cy Z pg(T™"HE) < C pg(Cn)
(E’juk)eggn (Evjvk)eggn
ECT™iC, EcT™iC,

where C' = CCy ' Cy.

Similarly,
—1 —1

Z eS2n 9(2Q)—2nP.(Tog) Z Z eS2n 9(2Q)—2nP:(T.9)

QEG\T"Cp (B.j:k)€E2n  QEAM(E,jK)
ECM~\T"=iC,
—(2n—j—k)Pu(T\9) | ,Som— i 19 ~
< Z Ce—(2n=j—k) (g)‘egjkbo(E)
(Evjvk)€82n~

ECM~\T"=IC,
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-1 -1

S X OO (e )| o

(E7]7k)652’ﬂ
ECM~\T"9C,
<CC'Cy Y w(BE)<CCy'Cy Y ug(T™"HE) <O pug(M N C).
(E’j’k‘)eg2n (E>j7k)€£2n
ECM~\T™IC, ECM~T" ¢,
Putting these bounds together allows us to complete our estimate of (6.23)),

2n(P,(T,g) — P,

g

(T.g)) — Z — Cy < 1(Cp) log (C/Mg(cn) + Ce‘%"(P*(T,g)—SUPg))
+ pu(M \Cp) log <C’ug(M N Cn) + Ce—in(P*(T,g)—supg)> )

Since by Sublemma 1(Cp) tends to 1 as n — +o0, while y(Cy,) tends to 0 as n — +oo,
the limit of the right-hand side tends to —oo. This yields a contradiction unless P, (7, g) <
P, (T,g). O

7. THE BILLIARD FLOwW

Throughout this section, we see the billiard flow ¢; as the vertical flow in the space
Q:{(x,t)6M><IR|O<1€<T($)}/~,

where the equivalence relation is defined by (z,7(z)) ~ (T'(z),0). In other words, we see ¢; as
the suspension flow over 7" under the return time 7. Furthermore, transporting the Euclidean
metric on Q@ x $! onto €, the flow ¢; is uniformly hyperbolic.

Proposition 7.1. Let g be a (M}, ay)-Hélder potential such that P.(T,g) —supg > solog2,
with SSP.1 and SSP.2. Let fig = (jg(7)) " tug @ A, where X is the Lebesque measure. Then
(¢, fig) s K-mizing.

Proof. The ergodicity of (¢, fig) follows directly from the ergodicity of (T', iig) proved in Propo-
sition

To prove the K-mixing, we follow closely the method used in Sections 6.9, 6.10 and 6.11
from [13]. In fact, replacing p and puq with g and fiy throughout these sections, we only have
to check that [I3, Exercise 6.35] is still true in order to apply verbatim the arguments. This
is what we prove here.

To do so, we first need to recall some of the construction done in [I3], Section 6.9]. If x; and
x3 are two nearby points in M such that

(7.1) {z2} = Wm) N Wo(23) £ 0, {ag} = W(z1) N W¥(as) £ 0,

we then construct the 4-loop Y1, Ya, Y3, Yy, Y5 € Q as follow. Let Y7 = X; = (x1,t) and
X3 = (z3,t). Define

Yo = WH(Y1) N Wige (X3), Yz = W2 (Ya) N W' (X3),

ocC

Yo =WH(Ys) N Wioe(Xa), Y5 = W3 (Yy) N Wiee'(X1),

ocC

where W* and W* are unstable and stable manifolds for the flow, and W2 and W25 are

local weak unstable and local weak stable manifolds for the flow. We always assume that this
construction stays under the ceiling function 7. Actually, as proven in [I3, Lemma 6.40] there
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exists o such that Y5 = ¢,(Y1), with |o| = usrp(K) where K is the rectangle in M with
corners ri, Tz, 3, 4. LThus the 4-loops are always open. )

For z € M, let L, = {¢(x) | 0 < t < 7(x)}. Then the partition {L£, | x € M} of Q
is measurable and the conditional measures of ji; on £, are uniform. Call A, the Lebesgue
probability measure on L,. Let D C € be such that fig(D) = 1 and let By = {z € M |
Az(Lz ~ D) = 0}. Clearly, puq(Er) = 1.

We call a point x1 € E1 rich if for any € > 0 there exists another point x3 € E1 such that
0 < d(xzy,x3) < € and holds with x9 and x4 € E1. Denote Ey C E; the set of rich points.

The analogous of [13, Exercise 6.35] is to prove that p4(E2) = 1. Let {R;};>1 be the cover
of M into Cantor rectangles (discarding the ones with zero p,-measure). Let R be one of
those Cantor rectangle and denote pg the conditional measure of pug on R. It is enough to
prove that ur(E>) = 1. Since pg(Eq) = 1 we have that pr(E;) = 1. Furthermore, since the
partition of R into stable manifolds is measurable, we can disintegrate pr with respect to this
partition, with conditional measure p? on W € RN W?. It follows that for pup-a.e. point
r € EyNR,if W =W (x) € W? contains z then p!V (W N E;) = 1. Similarly, for ug-a.e. point
r € EyNR,if W = W(z) € W contains = then u)V (WNE;) = 1, where 41}V is the conditional
measure on W in the disintegration of pp with respect to the measurable partition RN W" of
R. Then pur(ER) = 1, where ER denotes the set of points z in R such that both stable and
unstable conditional measure on leaves containing x give measure 1 to Ej.

Let Ef“ C FE5 be the set of rich points z; such that z3 belongs to RN E; (and therefore
x9 and x4 also belong to RN E; by the properties of a Cantor rectangle). By contradiction,
assume that ur(EL) # 1. Define the sets

CQR:{$1 €E1QR|3€>O,V$3€E1QR, if0<d($1,l‘3) <z—:thenfc2§éE1ﬂR},
CR={z1€ EyNR |3 >0,Ve3 € By NR, if 0 < d(z1,23) < € then x4 ¢ E; N R}.

Note that we don’t have to introduce in these definitions the condition ([7.1]) since it is auto-
matically satisfied by the construction of Cantor rectangles. Thus, we have (E; N R) \ Ef =
CRUCE, so that ur(CEUCHK) > 0. Assume first that pur(C5) > 0. Define the family of sets

C’fn:{xleCfLe}%}.

Since (U,,>; Cfn = CI is an increasing union, there is some n such that uR(Cfn) > 0. Let
T € Cfn N Er and W € WY be such that x1 € W. Let x3 € E1 N RN Er be such that
0 < d(zy,23) < % Let Wy € W" be the unstable manifold containing x3. By construction
of Eg, we have u"Vo(Wy N E1) = 1, and since pV° have support Wy (otherwise, p, would not

have total support because of the absolute continuity of the holonomy), in fact we have that

MZVO(WO NELN B(l’l, %)) > 0.
Thus p)) (Ow (WoNE1NB(z1,1))) > 0. Now, if 3 € WoNENB(z1, =), then &3 ¢ F. In other
words, E1 N Ow (Wy N Ep N B(x, %)) = (). Since z; € Eg, we have that xV (W N E;) =1,
so that pl) (Ow(Wo N Ey N B(z1,1))) = 0, a contradiction. Thus Ep N C’fn = (), so that
pr(CE) = 0. We proceed similarly, exchanging the role of W* and W, in order to prove that
pr(CF) = 0. Finally, we get that up(FEL) = 1, the contradiction closing the proof. O

Proposition 7.2. Under the assumptions of Propositz'on (¢4, fig) is Bernoulli.



62 JEROME CARRAND

Proof. The idea of the proof is to bootstrap from the K-mixing following the techniques of [15]
with modifications similar to those in [3, Proposition 7.19]. The proof in [15] proceeds in two
steps.

Step 1. Construction of §-regular coverings. Given § > 0, the idea is to cover 2, up to a set of
fig-measure at most ¢, by small Cantor boxes — essentially a set of the form Cantor rectangle
times interval — such that figy restricted to each Cantor box is arbitrarily close to a product
measure. The basis of the boxes will be very similar to the covering {R;};en from Lemma
however, some adjustments must be made in order to guarantee uniform properties of the
Jacobian of the relevant holonomy map.

Above a Cantor rectangle R with p4(R) > 0, we construct a Cantor box B following the
construction of P-sets from [28, Section 3|. Let W} and W5 be the stable sides of the smallest
solid rectangle D(R) containing R. Let W be a stable manifold for ¢; projecting on W7
through the map P_ : (z,t) € Q — z € M if t < 7(z), and being such that W C Qg =
{(z,t) | 0 <t < 7(x)}. Consider the set Wr C W of points (z,t) € W such that x € R. Let
to be small enough so that S = [JI°, ¢:(Wr) C Q. Now, By is obtained by moving S along
the unstable manifolds of ¢; to another surface of that type, spanned by Ws5. That is, for
each (z,t) € S, take the unstable manifold W (x,t) of ¢; passing by (z,t), and projecting on
the unstable manifold for T passing by x € R. Let By = U(x,t)eS W(x,t) and let B C By be
the set of points (x,t) € By such that 2z € R. Notice that, up to subdividing R into smaller
rectangles taking a smaller ¢y, we can assume that B C €. Thus, by construction, the set B
has the property that for all z,y € B, the local unstable manifold of x and the local weakly
stable manifold of y intersect each other at a single point which lies in B. This is the crucial
property of what Ornstein and Weiss, in [28], called a rectangle.

Since pg(R) > 0, we have fiy(B) = topg(R) > 0, so that the conditional measure i of fig
restricted to B makes sense. Now, we want to equip B with a product measure, absolutely
continuous with respect to fig. We proceed as follows. Since the partition of B into unstable
manifolds is measurable, we can disintegrate fip into conditional measures "¢, on WenB
with £ € Z,, and a factor measure j1 on the set Z; parametrizing the unstable manifolds of
B. Fix a point z € B, and consider B as the product of W*(z) N B with W"*(z) N B, where
W*(2) is the local unstable manifold of z and W™*(z) is the local weak stable manifold of z.
Define jif, = iV (®) @ fi, and note that we can view fi as inducing a measure on W¥5(z). We
still have to prove that iy < fip.

Similarly, let ug be the conditional measure of 4 restricted to R. Since the partition into
unstable manifolds We, { € Z, is measurable, we can disintegrate pup into the conditional
measures 1"V on W N R and a factor measure /i on Z. We want to relate the disintegration jip
with the one of 1g. Notice that we can view Zy as the set Z x [0, to], where Z parametrize the
set of unstable manifolds of R through the map associating &4 € Z, with the pair (§,t) where
§ € Z is such that P_(Wg,) = We C D(R) and t is the value in the definition of S where W,
and S intersect. Considering sets A C B of the form A = P_(A) x [t_,t4], we get that

_ ~ . _ t+ B iy W )
/€¢€Z¢M €¢(A)du(€¢)—MB(A)—/t MR(P(A))dt_/t /gezu §(P_(A))dji(€) dt.

Thus, we can identify " % with /LP’(W%), and dji with djidt. From this identifications, we

deduce that the projection map Py, from some W to P_(W), and its inverse are absolutely
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continuous. The absolute continuity of the holonomy map Oy between unstable manifolds 1
and W in B thus follows directly from the absolute continuity of the holonomy map between
unstable manifolds in R since Oy = Py, o0p_w)o Pw,—. This implies that %, is absolutely
continuous with respect to i, and thus also with respect to fiyz. The following definition is
taken from [15].

Definition 7.3. For § > 0, a §-reqular covering of Q is a finite collection B of disjoint Cantor

bozes for whicﬂ
a) fig(Upes B) 21— 9.
b) Every B € B satisfies ‘ -B(B - 1‘ < 0. Moreover, there exists G C B, with [ig(G) >

(1 —9)pg(B), such that ‘d“B —1‘ <0 forallx € G.

By [15, Lemma 5.1], such coverings exist for any § > 0, and for Cantor boxes arbitrarily
small. The proof essentially uses the covering of M™® from Lemma to build Cantor boxes,
up to finite subdivision of the covering to ensure a). To get b), subdivide the boxes into smaller
ones on which the Jacobian of the holonomy map between unstable manifolds is nearly 1. This
argument relies on Lusin’s theorem and goes through in our setting with no changes.

Step 2. Proof that ; is vwb. First, define a; to be the partition of Q into sets of the form
Qo N (A X [22,1321)), where A € MY, and [ € N. Then ap < a1 < az < ... is such that
V32, Vi éna; generates the whole g-algebra on Q. Using Theorems 4.1 and 4.2 from [I5],
we only need to prove that each partition &; is vwB in order to prove that (¢, fig) is Bernoulli.

Using M!, as the basis elements of @; allows us to apply the bounds directly since
OML, = 8 US_ 1. We can now apply the same arguments as in [I5, Section 6.2] with the
modifications described in the second part of the proof of [3, Proposition 7.19]. Actually, the
only place where we need to be careful is [3, Eq. (7.33)] because of our additional horizontal
cuttings. We finish the proof by dealing with this equation. We first have to recall some
notations from [3] first.

Fix some i € N, and let @ = @;. Let € > 0 and define § = e=(e/CN2/ ) (recalling that
~v > 1), where C’ > 0 is the constant from below.

Let B = {By,Bs,..., By} be a d-regular cover of Q such that the diameters of the B;’s
are less than 0. Define the partition 7 = {By, By, B, ..., Br}, where By = Q0 \ UleBi. For
cach i > 1, let G; C B; denote the set identified in Definition [7.3(b). Since (¢_1, fig) is K-

mixing, there exists an even number N = 2m, such that for any integers Ny, N7 such that

N < Ny < Ny, d-almost every atom A of \/%3:2 ¢_;au, satisfies
i, (B|A
‘“{()—1 <6, forall Bem,
fig(B)

where fig(-|A) is the measure fi; conditioned to A. Now let m, Ny, N; be given as above
and define w = \/%(1) " ¢_ja. In order to prove that & is vwb, we need to give estimates on
elements of w. To do so, we identify as in [15], Section 6. 2] sets of bad atoms, whose union will

have measure less than ce. As in [I5], we call these sets F1, Fg, FS, F4 Since the estimates on

18The corresponding definition in [I5] has a third condition, but it is satisfied in our setting since the stable
and unstable manifolds are one-dimensional and have bounded curvature.



64 JEROME CARRAND

the fig-measure of the bad sets 13’1 and Fg do not change, we only define Fg and F4. Define F3
to be the set of all points x €  \ By such that W?*(z) intersects the boundary of the element
w(x) before it fully crosses the rectangle 7(x). Thus, if © € Fj, there exists a subcurve of
W#(x) connecting z to the boundary of (¢_;@)(z) for some ¢ € [Ny —m, N; —m]. Then since
7(z) has diameter less than &, ¢;(2) lies within a distance CA~%§ of the boundary of & — where
Cy and A > 1 come from the hyperbolicity of the billiard flow. Using the bound , the
total measure of such points must add up to at most

Ni—m
(72) Z (Wcmy =+ Caélji_l(&)‘)> < CH lOg 6|1—’7 + Cé(s < C/| 10g 5|1—'7’
1

i=Ng—m

- 1y
for some C” > 0. Letting I3 denote the union of atoms A € w such that jig(F3|A) > |logd| 2 ,

it follows that fiy(F3) < C’|log 5|ITPY This is at most € by choice of §.

The same precaution allows us to get the same bound on ﬂg(F4) as in [3].

Finally, the bad set to be avoided in the construction of the joining is By U (U?:lﬁ'i). Its
measure is less than ce by choice of §. From this point, once the measure of the bad set is

controlled, the rest of the proof in Section 6.3 of [I5] can be repeated verbatim. This proves
that @ is vwB. [

Proposition 7.4. Under the assumptions of Pmposition the measure [ig is flow adapteﬂ
that is, log || D¢yl is pg-integrable.

Proof. Let Q = {(z,y,0) € Q x S'} C T? denote the phase space for the billiard flow ®; with
the usual Euclidean metric denoted by dq. Let v, be the flow invariant measure obtained as

the image of fi, by the conjugacy map between 2 and Q. Let
Sy ={P_4(2) €Q|2z€Syand t < 7(T'2)}

denote the flow surface obtained by flowing Sy backward until its first collision under the
inverse flow. Similarly, let

S ={P1(2) €| 2€Syand t < 7(2)}

denote the forward flow of Sy until its first collision. To show that the measure v; is flow-
adapted, it suffices to show that [ |log do(z,85)| dv,(z) < oco. For then this implies that
log || D®,|| is integrable for each t € [—Tiin, Tmin] and then by subadditivity for each t € R.

Let P*(-) denote the projection under the forward (backward) flow of a subset of { until
first collision. Let N (-) denote the e-neighborhood of a set in M in the Euclidean metric
dys and let N(-) denote the e-neighborhood of a set in Q in the metric dg. It follows from
[13, Exercise 3.15], that there exists C' > 0 such that for any ¢ > 0,

(7.3) P=(NVE(Sy)) Nggl/Q(Sl) and similarly ~ PT(VEH(ST)) C Ngil/Q(S,l)
From , there exist Cy > 0 and « > 1 such that
(7.4) (VM (S41)) < Cylloge| ™ for all £ > 0.

19T his result is due to Mark Demers. I thank him for allowing me to use his proof.
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Putting together (7.3|) and (7.4) yields
(7.5) Vy(N2(S5)) < TmaxCly| log Ce/2|™7 < C'ipax| loge| ™7 .

For p > 1 to be chosen below, define for n > 1, A,, = Ngnp (Sy) \NeQ_MH)p (Sy)- Ifze Ay,
then |logdq(z,S; )| < (n+ 1)P. Thus we estimate using (7.5,

/ |log do(z,Sy )| drg < 1+ logdiam(§2) + Z/ |log do(z,Sy )| dyg
Q n>1 An
< 1+ logdiam(Q2) + Z(n + 1)PC ripaxn 7,

n=1

and the series converges as long as p > 1/(y—1). A similar argument shows that log do(z, S;")
is v, integrable so that v, is flow adapted. O

APPENDIX A. MOTIVATIONS FROM UNIFORM HYPERBOLIC DYNAMICS

We start this note by presenting the usual method the existence of measures of maximal
entropy is proved in the case of uniform hyperbolicity. First, we consider a hyperbolic trans-
formation of a compact set, and then the case of an Anosov flow.

A.1. Hyperbolic maps. Let X be a compact Riemannian manifold and let T : X — X be
a C" diffeomorphism. Assume that T is uniformly hyperbolic, that is

3> 1,3C > 0,3E°, E* C TX such that
(i)TX = E*® E*, DT(E®) C E*, DT"}(E“) C E%,
(@) [[DaT"vs|| < CAT"[|vsl[,  Vn =0, Vs € B} C T X,
(132) || DT "0y || < CAXT"||ow]], Yn =0, Vv, € EY C T, X.

One fundamental theorem about hyperbolic dynamic is the Hadamard—Perron Theorem [23],
Theorem 6.2.8] which states that there exist two unique families of C" manifolds, {W,} },.ez
and {W, }mez, everywhere tangent respectively to E® and to E*, obtained as the graph of
some functions, and satisfying some stability and contraction properties. A key tool in the
proof is the construction of families of stable and unstable cones.

As a consequence [23, Corollary 6.4.10], all such diffeomorphisms are expansive, that is

(A.1) 30 >0,Ve,y € X, [d(T"(x),T"(y)) <6, Vn € Z = x = y|.

From the expansive property, it follows from [33, Theorem 8.2] that the metric entropy
p +— h,(T) is upper semi-continuous, hence the existence of equilibrium states for every
continuous potential — and in particular existence of measures of maximal entropy for the zero
potential. In the proof of [33, Theorem 8.2], expansiveness is only use to get the equality
hu(T) = h, (T, A) for partition A with diam(A) < ¢ (the expansivity constant of T') and any
T-invariant measure pu.

As proved by Bowen [6, Theorem 3.5], the expansiveness assumption of [33] Theorem 8.2]
can be weakened to entropy-expansiveness (the proof remains unchanged). This weakening
will be relevant in the case of Anosov flows.
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A.2. Anosov flows. Let X be a compact manifold and ¢ = {¢'} : R x X — X be a smooth
flow. Assume that ¢ is an Anosov flow, that is
x> 1,3C > 0,3FE°, EY, E° C TX such that
())TX =E°® E°® E,
d
(i1) Dt (E*/%) = B*/*, dimES = 1, o o'(z) € ES ~ {0},
t=0

(i40) [| Dap|ps || < ONT, | Dapiull < CATF, VE > 0.

—t

|Eg
In [7, Proposition 1.6], Bowen proves that an Anosov flow is flow expansive (in the sense of

Bowen—Walters), that is — as defined in [§] in the case of a fixed-point free flow,

Ve > 0,35 >0, Vz,y € X, Vh € C°(R) with h(0) =0,
[d(¢'(2), " (y)) < 6, Vt € R =y € pl==l(a))].
The key ingredient of the proof is the local product structure for hyperbolic flows. From (A.2)),
it is easy to see, for h = id, that an Anosov flow satisfies the following weaker property
de>0,ds >0, Vr € X,
Te(z) = {y € X |Vt € R, d(¢'(2), ¢'(y)) < e} C pl=(a).

Bowen proved [6, Example 1.6] that (A.3)) is a sufficient condition so that every time ¢! of
the flow is entropy-expansive. Therefore the map p € Mx(p') — h,(¢') is upper semi-
continuous, and so is its restriction to Mx (¢) C Mx (o). Hence, Anosov flows have equilib-
rium states for every continuous potential, and in particular for the zero potential, measures
of maximal entropy.

(A.2)

(A.3)

APPENDIX B. OBSTRUCTIONS FOR THE BILLIARD FLOW

In the previous section, in both situations, proofs of existence of MME use some sort of
expansiveness. However, the existence of a local product structure is a key ingredient in order
to establish the expansivity property: it gives a scale used as the J in and the ¢ in
(A.3)). Furthermore, the uniform contraction of stable (resp. unstable) manifolds for large
positive (resp. negative) times is used, and not some estimates of their lengths in negative
(resp. positive) times (such as fragmentation or growth lemmas, see for example [13]).

B.1. Entropy expansiveness. In Bowen’s proof, the local product structure is the main tool
in order to prove flow expansiveness. In the case of the billiard flow, their is no such structure.
Indeed, stable and unstable manifolds exist only for Lebesgue-almost every point and there
is no deterministic control of their length (hence no uniform scale for a local structure). One
might argue that a billiard flow admits invariant “cone” fields [0, Section 2] and construct
stable and unstable curves, but then the control on the length of those curves when applying
the flow is in term of expansion, not in term of contraction.

It then seems that h-expansiveness of each time ¢ of the flow is too much to ask for. Still,
one might hope that each ¢! is asymptotically h-ezpansive, that is h*(¢?) = i1_r>r(1) h* (¢t e) =0,

where h*(p!,e) = sup h(¢?, B(x,¢)). This definition was first introduced by Misiurewicz in
reX

[26] where he proved that the metric entropy of an asymptotic h-expansive transformation is
upper semi-continuous.
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(a) Some common collisions (b) Distinct collisions

FIGURE 2. Two examples of two periodic trajectories.

The quantity h*(¢!) is usually referred to as the topological tail entropy of ¢! [19]. In the

context of smooth dynamics, Buzzi [10] has shown that if f € C"(M), then h*(f) < %)R(f)
for some constant R(f). In particular, the metric entropy of a C* transformation is upper
semi-continuous. Clearly, this result does not apply to billiard flows.

Proving that the topological tail entropy of the billiard flow is zero is enough to prove the
upper semi-continuity of the metric entropy, hence the existence of some measure of maximal
entropy.

B.2. Relations with the Collision Map. In [§, Theorem 6], Bowen and Walters prove
that the special flow constructed over a continuous transformation and under a continuous
return time function, is flow expansive if and only if the base map is expansive. Since flow
expansiveness is an invariant for flow under reparametrization, without loss of generality, the
return time function can be chosen constant.

In [3], Baladi and Demers show that the collision map is expansive. However, since the
return time is only piecewise continuous, it is not easy to relate the expansivity of the collision
map to flow expansiveness of the billiard flow. As shown in Figure 2 two trajectories can be
easily separated by the collision map, but they remain close in the phase space of the flow.
We see that for a § too large in (and a natural choice of h), the two trajectories cannot
be distinguished. What could be a good choice for 67 The main problem being to find a §
independent of trajectories (it is easier to find a § for specific trajectories, such as those ones
in Figure 2| but the inf of those § over all trajectories might be 0). If such § existed, we expect
it is controlled in some way by Tmin.

For similar reasons, it appears that it is not a simple consequence of the collision map ex-
pansiveness for the flow to satisfy condition (A.3) (which is a weaker than flow expansiveness).
For example, the two orbits shown in F igure) are close in the phase space of the flow, but
far apart in the phase space of the collision map (since the collisions they make are distinct).
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